Publications by authors named "Natasha Sansone"

While the liver, specifically hepatocytes, are widely accepted as the main source of hepatitis C virus (HCV) production, the role of the liver/hepatocytes in clearance of circulating HCV remains unknown. Frequent HCV kinetic data were recorded and mathematically modeled from five liver transplant patients throughout the anhepatic (absence of liver) phase and for 4 hr post-reperfusion. During the anhepatic phase, HCV remained at pre-anhepatic levels ( = 3) or declined ( = 2) with ~1 hr.

View Article and Find Full Text PDF

Background: Cases of sustained-virological response (SVR or cure) after an ultra-short duration (≤27 days) of direct-acting antiviral (DAA)-based therapy, despite HCV being detected at end of treatment (EOT), have been reported. Established HCV mathematical models that predict the treatment duration required to achieve cure do not take into account the possibility that the infectivity of virus produced during treatment might be reduced. The aim of this study was to develop a new mathematical model that considers the fundamental and critical concept that HCV RNA in serum represents both infectious virus (V) and non-infectious virus (V) in order to explain the observation of cure with ultrashort DAA therapy.

View Article and Find Full Text PDF

Deoxycytidine kinase (dCK) is a key enzyme in the nucleoside salvage pathway that is also required for the activation of several anticancer and antiviral nucleoside analog prodrugs. Additionally, dCK has been implicated in immune disorders and has been found to be overexpressed in several cancers. To allow the probing and modulation of dCK activity, a new class of small-molecule inhibitors of the enzyme were developed.

View Article and Find Full Text PDF

The nonstructural 5A (NS5A) protein is a target for drug development against hepatitis C virus (HCV). Interestingly, the NS5A inhibitor daclatasvir (BMS-790052) caused a decrease in serum HCV RNA levels by about two orders of magnitude within 6 h of administration. However, NS5A has no known enzymatic functions, making it difficult to understand daclatasvir's mode of action (MOA) and to estimate its antiviral effectiveness.

View Article and Find Full Text PDF