The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data.
View Article and Find Full Text PDFThe fate of root epidermal cells is controlled by a complex interplay of transcriptional regulators, generating a genetically determined, position-biased arrangement of root hair cells. This pattern is altered during postembryonic development and in response to environmental signals to confer developmental plasticity that acclimates the plant to the prevailing conditions. Based on the hypothesis that events downstream of this initial mechanism can modulate the pattern installed during embryogenesis, we have developed a reaction diffusion model that reproduces the root hair patterning previously observed experimentally.
View Article and Find Full Text PDF