Publications by authors named "Natasha Oswal"

In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed.

View Article and Find Full Text PDF

Genetically identical animals kept in a constant environment display a wide distribution of lifespans, reflecting a large non-genetic, stochastic aspect to aging conserved across all organisms studied. This stochastic component means that in order to understand aging and identify successful interventions that extend the lifespan or improve health, researchers must monitor large populations of experimental animals simultaneously. Traditional manual death scoring limits the throughput and scale required for large-scale hypothesis testing, leading to the development of automated methods for high-throughput lifespan assays.

View Article and Find Full Text PDF

Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium .

View Article and Find Full Text PDF

Aging involves a transition from youthful vigor to geriatric infirmity and death. Individuals who remain vigorous longer tend to live longer, and within isogenic populations of C. elegans the timing of age-associated vigorous movement cessation (VMC) is highly correlated with lifespan.

View Article and Find Full Text PDF