Publications by authors named "Natasha O'Reilly"

Purpose: This study explored whether and how a sample of women made informed choices about prenatal testing for foetal anomalies; its aim was to provide insights for future health policy and service provision.

Methods: We conducted semi-structured interviews with 38 mothers in Ottawa, Ontario, all of whom had been offered prenatal tests in at least one pregnancy. Using the Multi-dimensional Measure of Informed Choice as a general guide to analysis, we explored themes relevant to informed choice, including values and knowledge, and interactions with health professionals.

View Article and Find Full Text PDF

This study challenges the conventional view that metalloporphyrins protect cultured cortical neurons in models of cerebral ischemia by acting as intracellular catalytic antioxidants [superoxide dismutase (SOD) mimetics]. High SOD-active Mn(III)porphyrins meso-substituted with N,N'-dimethylimidazolium or N-alkylpyridinium groups did not protect neurons against oxygen-glucose deprivation (OGD), although lower SOD-active and -inactive para isomers protected against N-methyl-D-aspartate (NMDA) exposure. Mn(III)meso-tetrakis(4-benzoic acid)porphyrin (Mn(III)TBAP), as well as SOD-inactive metalloTBAPs and other phenyl ring- or beta-substituted metalloporphyrins that contained redox-insensitive metals, protected cultures against OGD and NMDA neurotoxicity.

View Article and Find Full Text PDF

Metachromatic leukodystrophy (MLD) is a rare autosomal recessive disorder caused by mutations of the arylsulfatase A (ARSA) gene. We have investigated more than fifty MLD patients using allele-specific PCR assays to detect the pseudodeficiency (PD) allele and several common MLD mutations, followed by comprehensive nucleotide sequencing of the ARSA gene to detect rare or private mutations. Here we report the identification of nine novel microlesions in the ARSA gene: five missense mutations (c.

View Article and Find Full Text PDF

Cellular volume loss or shrinkage is a ubiquitous feature of apoptosis and thus may contribute to this form of degeneration. Chloride (Cl(-)) and potassium (K(+)) efflux has been shown to participate in volume regulation and several recent reports have implicated K(+) efflux in apoptotic neuronal death. Here pharmacological inhibitors of various K(+) and Cl(-) channels and transporters were used to decipher the relationship between cellular volume regulation and apoptosis.

View Article and Find Full Text PDF