Extracellular vesicles (EVs) are cell-derived, naturally produced, membrane-bound nanoscale particles that are linked to cell-cell communication and the propagation of diseases. Here, we report the design and testing of in-plane nanofluidic devices for resistive-pulse measurements of EVs derived from bovine milk and human breast cancer cells. The devices were fabricated in plane with three nanopores in series to determine the particle volume and diameter, two pore-to-pore regions to measure the electrophoretic mobility and zeta potential, and an in-line filter to prevent cellular debris and aggregates from entering the nanopore region.
View Article and Find Full Text PDF