There is substantial evidence that neuromodulatory systems critically influence brain state dynamics; however, most work has been purely descriptive. Here, we quantify, using data combining local inactivation of the basal forebrain with simultaneous measurement of resting-state fMRI activity in the macaque, the causal role of long-range cholinergic input to the stabilization of brain states in the cerebral cortex. Local inactivation of the nucleus basalis of Meynert (nbM) leads to a decrease in the energy barriers required for an fMRI state transition in cortical ongoing activity.
View Article and Find Full Text PDFVisual hallucinations in Parkinson's disease can be viewed from a systems-level perspective, whereby dysfunctional communication between brain networks responsible for perception predisposes a person to hallucinate. To this end, abnormal functional interactions between higher-order and primary sensory networks have been implicated in the pathophysiology of visual hallucinations in Parkinson's disease, however the precise signatures remain to be determined. Dimensionality reduction techniques offer a novel means for simplifying the interpretation of multidimensional brain imaging data, identifying hierarchical patterns in the data that are driven by both within- and between-functional network changes.
View Article and Find Full Text PDFIn stressful or anxiety-provoking situations, most people with Parkinson's disease (PD) experience a general worsening of motor symptoms, including their gait impairments. However, a proportion of patients actually report benefits from experiencing-or even purposely inducing-stressful or high-arousal situations. Using data from a large-scale international survey study among 4324 people with PD and gait impairments within the online Fox Insight (USA) and ParkinsonNEXT (NL) cohorts, we demonstrate that individuals with PD deploy an array of mental state alteration strategies to cope with their gait impairment.
View Article and Find Full Text PDFThe direct link between neuropathology and the symptoms that emerge from damage to the brain is often difficult to discern. In this perspective, we argue that a satisfying account of neurodegenerative symptoms most naturally emerges from the consideration of the brain from the systems-level. Specifically, we will highlight the role of the neuromodulatory arousal system, which is uniquely positioned to coordinate the brain's ability to flexibly integrate the otherwise segregated structures required to support higher cognitive functions.
View Article and Find Full Text PDFBackground: Freezing of gait is a complex paroxysmal phenomenon that is associated with a variety of sensorimotor, cognitive and affective deficits, and significantly impacts quality of life in patients with Parkinson's disease (PD). Despite a growing body of evidence that suggests anxiety may be a crucial contributor to freezing of gait, no research study to date has investigated neural underpinnings of anxiety-induced freezing of gait.
Objective: Here, we aimed to investigate how anxiety-inducing contexts might "set the stage for freezing," through the ascending arousal system, by examining an anxiety-inducing virtual reality gait paradigm inside functional magnetic resonance imaging (fMRI).
Background: Visual illusions (VI) in Parkinson's disease (PD) are generally considered as an early feature of the psychosis spectrum leading to fully formed visual hallucinations (VH), although this sequential relationship has not been clearly demonstrated.
Objective: We aimed to determine whether there are any overlapping, potentially graded patterns of structural and functional connectivity abnormalities in PD with VI and with VH. Such a finding would argue for a continuum between these entities, whereas distinct imaging features would suggest different neural underpinnings for the phenomena.
Introduction: Current neuroimaging research has revealed several brain alterations in idiopathic REM sleep behaviour disorder (iRBD) that mirror and precede those reported in PD. However, none have specifically addressed the presence of changes across the reward system, and their role in the emergence of impulse control disorders (ICDs). We aimed to compare the volumetric and functional connectivity characteristics of the reward system in relation to the psychobehavioral profile of patients with iRBD versus healthy controls and PD patients.
View Article and Find Full Text PDF