Phosphate ester analogs in which the bridging oxygen is replaced with a methylene or fluoromethylene group are well known non-hydrolyzable mimics of use as inhibitors and substrate analogs for reactions involving phosphate esters. Properties of the replaced oxygen are often best mimicked by a mono-fluoromethylene group, but such groups are challenging to synthesize and can exist as two stereoisomers. Here, we describe the protocol for our method of synthesizing the α-fluoromethylene analogs of d-glucose 6-phosphate (G6P), as well as the methylene and difluoromethylene analogs, and their application in the study of 1l-myo-inositol-1-phosphate synthase (mIPS).
View Article and Find Full Text PDFKanosamine is an antibiotic and antifungal compound synthesized from glucose 6-phosphate (G6P) in by the action of three enzymes: NtdC, which catalyzes NAD-dependent oxidation of the C3-hydroxyl; NtdA, a PLP-dependent aminotransferase; and NtdB, a phosphatase. We previously demonstrated that NtdC can also oxidize substrates such as glucose and xylose, though at much lower rates, suggesting that the phosphoryloxymethylene moiety of the substrate is critical for effective catalysis. To probe this, we synthesized two phosphonate analogues of G6P in which the bridging oxygen is replaced by methylene and difluoromethylene groups.
View Article and Find Full Text PDFNtdC is an NAD-dependent dehydrogenase that catalyzes the conversion of glucose 6-phosphate (G6P) to 3-oxo-glucose 6-phosphate (3oG6P), the first step in kanosamine biosynthesis in and other closely-related bacteria. The NtdC-catalyzed reaction is unusual because 3oG6P undergoes rapid ring opening, resulting in a 1,3-dicarbonyl compound that is inherently unstable due to enolate formation. We have reported the steady-state kinetic behavior of NtdC, but many questions remain about the nature of this reaction, including whether it is the α-anomer, β-anomer, or open-chain form that is the substrate for the enzyme.
View Article and Find Full Text PDFGlucose-6-phosphate 3-dehydrogenase (NtdC) is an NAD-dependent oxidoreductase encoded in the NTD operon of Bacillus subtilis. The oxidation of glucose 6-phosphate by NtdC is the first step in kanosamine biosynthesis. The product, 3-oxo-d-glucose 6-phosphate (3oG6P), has never been synthesized or isolated.
View Article and Find Full Text PDFThe ntd operon in Bacillus subtilis is essential for biosynthesis of 3,3'-neotrehalosadiamine (NTD), an unusual nonreducing disaccharide reported to have antibiotic properties. It has been proposed that the three enzymes encoded within this operon, NtdA, NtdB, and NtdC, constitute a complete set of enzymes required for NTD synthesis, although their functions have never been demonstrated in vitro. We now report that these enzymes catalyze the biosynthesis of kanosamine from glucose-6-phosphate: NtdC is a glucose-6-phosphate 3-dehydrogenase, NtdA is a pyridoxal phosphate-dependent 3-oxo-glucose-6-phosphate:glutamate aminotransferase, and NtdB is a kanosamine-6-phosphate phosphatase.
View Article and Find Full Text PDFThe LYS12 gene from Candida albicans, coding for homoisocitrate dehydrogenase was cloned and expressed as a His-tagged protein in Escherichia coli. The purified gene product catalyzes the Mg(2+)- and K(+)-dependent oxidative decarboxylation of homoisocitrate to α-ketoadipate. The recombinant enzyme demonstrates strict specificity for homoisocitrate.
View Article and Find Full Text PDF