Publications by authors named "Natasha Chattergoon"

Article Synopsis
  • Chronic coronary artery stenosis can cause myocardial dysfunction without heart attacks, often due to repetitive stunning or hibernation.
  • A study using metabolomics on dogs showed that β-blockers like carvedilol and metoprolol can help improve heart function and metabolism in damaged tissues, particularly by influencing mitochondrial function.
  • Carvedilol had more positive effects on recovery and mitochondrial health than metoprolol, suggesting that different β-blockers can have different impacts on heart health.
View Article and Find Full Text PDF

Cardiac metabolic substrate preference shifts at parturition from carbohydrates to fatty acids. We hypothesized that thyroid hormone (T ) and palmitic acid (PA) stimulate fetal cardiomyocyte oxidative metabolism capacity. T was infused into fetal sheep to a target of 1.

View Article and Find Full Text PDF

The fetal heart undergoes its own growth and maturation stages all while supplying blood and nutrients to the growing fetus and its organs. Immature contractile cardiomyocytes proliferate to rapidly increase and establish cardiomyocyte endowment in the perinatal period. Maturational changes in cellular maturation, size and biochemical capabilities occur, and require, a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life.

View Article and Find Full Text PDF

Fetal cardiomyocytes shift from glycolysis to oxidative phosphorylation around the time of birth. Myeloid ecotropic viral integration site 1 (MEIS1) is a transcription factor that promotes glycolysis in hematopoietic stem cells. We reasoned that MEIS1 could have a similar role in the developing heart.

View Article and Find Full Text PDF

Key Points: Plasma thyroid hormone (tri-iodo-l-thyronine; T ) concentrations rise near the end of gestation and is known to inhibit proliferation and stimulate maturation of cardiomyocytes before birth. Thyroid hormone receptors are required for the action of thyroid hormone in fetal cardiomyocytes. Loss of thyroid hormone receptor (TR)α1 abolishes T signalling via extracellular signal-related kinase and Akt in fetal cardiomyocytes.

View Article and Find Full Text PDF

While abnormal hemodynamic forces alter fetal myocardial growth, little is known about whether such insults affect fetal cardiac valve development. We hypothesized that chronically elevated systolic load would detrimentally alter fetal valve growth. Chronically instrumented fetal sheep received either a continuous infusion of adult sheep plasma to increase fetal blood pressure, or a lactated Ringer's infusion as a volume control beginning on day 126 ± 4 of gestation.

View Article and Find Full Text PDF

Circulating fetal 3,3',5-tri-iodo-l-thyronine (T(3) ) is maintained at very low levels until a dramatic prepartum surge. 3,3',5-Tri-iodo-l-thyronine inhibits serum-stimulated proliferation in near-term ovine cardiomyocytes, but it is not known whether midgestation myocytes are also inhibited. Because early cessation of cardiomyocyte mitosis would result in an underendowed heart, we hypothesized that 0.

View Article and Find Full Text PDF

Tri-iodo-l-thyronine (T(3)) suppresses the proliferation of near-term serum-stimulated fetal ovine cardiomyocytes in vitro. Thus, we hypothesized that T(3) is a major stimulant of cardiomyocyte maturation in vivo. We studied 3 groups of sheep fetuses on gestational days 125-130 (term ∼145 d): a T(3)-infusion group, to mimic fetal term levels (plasma T(3) levels increased from ∼0.

View Article and Find Full Text PDF

During fetal life the myocardium expands through replication of cardiomyocytes. In sheep, cardiomyocytes begin the process of becoming terminally differentiated at about 100 gestation days out of 145 days term. In this final step of development, cardiomyocytes become binucleated and stop dividing.

View Article and Find Full Text PDF

Chronic anaemia increases the workload of the growing fetal heart, leading to cardiac enlargement. To determine which cellular process increases cardiac mass, we measured cardiomyocyte sizes, binucleation as an index of terminal differentiation, and tissue volume fractions in hearts from control and anaemic fetal sheep. Fourteen chronically catheterized fetal sheep at 129 days gestation had blood withdrawn for 9 days to cause severe anaemia; 14 control fetuses were of similar age.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) has a beneficial effect in pulmonary hypertension and is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs), also known as mesenchymal stem cells, hold promise for use in adult stem cell-based ex vivo gene therapy. To test the hypothesis that genetically engineered MSCs secreting CGRP can inhibit vascular smooth muscle cell proliferation, rat MSCs were isolated, ex vivo expanded, and transduced with adenovirus containing CGRP.

View Article and Find Full Text PDF

Homocysteine (Hcy) is a metabolite of the essential amino acid methionine. Hyperhomocysteinemia is associated with vascular disease, particularly carotid stenosis. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor gamma , attenuates balloon catheter-induced carotid intimal hyperplasia in type 2 diabetic rats.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs) hold promise for use in adult stem cell-based cell and gene therapy. To determine the feasibility of adenoviral-mediated CGRP gene transfer into ex vivo-expanded MSCs, rat MSCs were isolated, ex vivo expanded, and transduced with adenoviruses.

View Article and Find Full Text PDF

Endothelial nitric oxide synthase (eNOS) is an attractive target for cardiovascular gene therapy. Marrow stromal cells (MSCs), also known as mesenchymal stem cells, hold great promise for use in adult stem cell-based cell and gene therapy. To determine the feasibility of adenoviral-mediated eNOS gene transfer into ex vivo expanded MSCs, rat MSCs (rMSCs) were isolated, expanded ex vivo, and transduced with Ad5RSVeNOS, an adenoviral vector containing the eNOS gene under the control of the Rous sarcoma virus promoter.

View Article and Find Full Text PDF