Publications by authors named "Natascha Udilova"

Free radicals are involved in the onset of many diseases, therefore the availability of adequate spin traps is crucial to the identification and localization of free radical formation in biological systems. In recent studies several hydrophilic compounds of 2-ethoxycarbonyl-2-methyl-pyrroline-N-oxide (EMPO) have been found to form rather stable superoxide spin adducts with half-lives up to twenty minutes at physiological pH. This is a major improvement over DMPO (t1/2=ca.

View Article and Find Full Text PDF

Several derivatives of N-t-butyl-alpha-phenylnitrone (PBN) such as N-2-(2-ethoxycarbonyl-propyl)-alpha-phenylnitrone (EPPN) have recently been reported to form superoxide spin adducts (t(1/2) ca. 2-7 min at pH 7.0), which are considerably more stable than their respective PBN or DMPO adducts (t(1/2) ca.

View Article and Find Full Text PDF

The N-t-butyl-alpha-phenylnitrone derivative N-2-(2-ethoxycarbonyl-propyl)-alpha-phenylnitrone (EPPN) has recently been reported to form a superoxide spin adduct (t(1/2)=5.25 min at pH 7.0), which is considerably more stable than the respective N-t-butyl-alpha-phenylnitrone or 5,5-dimethylpyrroline N-oxide adducts (t(1/2) approximately 10 and 45s, respectively).

View Article and Find Full Text PDF

EMPO [5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide] is a highly hydrophilic cyclic nitrone spin trap, whose superoxide adduct is considerably more stable (t 1/2 = 8.6 min) than DMPO (5,5-dimethyl-1-pyrroline N-oxide, t 1/2=45 s). EPR spectra of spin adducts of EMPO and its derivatives are very similar to those of the respective DMPO spin adducts, in contrast to the rather complex spectra obtained using DEPMPO [5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide].

View Article and Find Full Text PDF

Type I diabetes is considered a multifactorial autoimmune process initiated by an environmental factor. There is evidence that reactive oxygen species are involved in destructing insulin-producing beta-cells. In mice, reactive oxygen species and nitric monoxide contribute to beta-cell damage in the non-obese diabetic strain developing spontaneously diabetes and in diabetes induced with multiple low doses of streptozotocin.

View Article and Find Full Text PDF

The compound 5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide (EMPO) is a hydrophilic cyclic nitrone spin trap, which, in contrast to DMPO, forms a relatively stable superoxide adduct (t(1/2)=8.6 min) with an EPR spectrum similar to the respective DMPO adduct. In order to find the optimal degree of lipophilicity of this novel type of spin trap with respect to the detection of radicals formed during lipid peroxidation, the ethoxy group of EMPO was replaced by alkoxy substituents of increasing chain length, leading to the methoxy- (MeMPO), 1-propoxy- (PrMPO), 1-butoxy- (BuMPO), and 1-octyloxy- (OcMPO) derivatives of EMPO.

View Article and Find Full Text PDF

Detection of oxygen-centered radicals was performed using the spin trap 1,3,3-trimethyl-6-azabicyclo[3.2.1]oct-6-ene-N-oxide (Trazon), a bicyclic nitrone spin trap that is easily synthesized from the corresponding amine via hydrogen peroxide mediated oxidation in the presence of the catalyst, sodium tungstate.

View Article and Find Full Text PDF