Purpose: to predict vestibular schwannoma (VS) response to radiosurgery by applying machine learning (ML) algorithms on radiomic features extracted from pre-treatment magnetic resonance (MR) images.
Methods: patients with VS treated with radiosurgery in two Centers from 2004 to 2016 were retrospectively evaluated. Brain T1-weighted contrast-enhanced MR images were acquired before and at 24 and 36 months after treatment.
Diagnostics (Basel)
December 2022
Emergency Radiology is a unique branch of imaging, as rapidity in the diagnosis and management of different pathologies is essential to saving patients' lives. Artificial Intelligence (AI) has many potential applications in emergency radiology: firstly, image acquisition can be facilitated by reducing acquisition times through automatic positioning and minimizing artifacts with AI-based reconstruction systems to optimize image quality, even in critical patients; secondly, it enables an efficient workflow (AI algorithms integrated with RIS-PACS workflow), by analyzing the characteristics and images of patients, detecting high-priority examinations and patients with emergent critical findings. Different machine and deep learning algorithms have been trained for the automated detection of different types of emergency disorders (e.
View Article and Find Full Text PDFRecent epidemiological data report that worldwide more than 53 million people have been infected by SARS-CoV-2, resulting in 1.3 million deaths. The disease has been spreading very rapidly and few months after the identification of the first infected, shortage of hospital resources quickly became a problem.
View Article and Find Full Text PDFThe year 2020 was characterized by the COVID-19 pandemic that has caused, by the end of March 2021, more than 2.5 million deaths worldwide. Since the beginning, besides the laboratory test, used as the gold standard, many applications have been applying deep learning algorithms to chest X-ray images to recognize COVID-19 infected patients.
View Article and Find Full Text PDFPurpose: Artificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context.
Methods: A narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections.
Background: Differentiate malignant from benign enhancing foci on breast magnetic resonance imaging (MRI) through radiomic signature.
Methods: Forty-five enhancing foci in 45 patients were included in this retrospective study, with needle biopsy or imaging follow-up serving as a reference standard. There were 12 malignant and 33 benign lesions.