Neuronal-glial cell cultures are usually grown attached to or encapsulated in an adhesive environment as evenly distributed networks lacking tissue-like cell density, organization and morphology. In such cultures, microglia have activated amoeboid morphology and do not display extended and intensively branched processes characteristic of the ramified tissue microglia. We have recently described self-assembling functional cerebellar organoids promoted by hydrogels containing collagen-like peptides (CLPs) conjugated to a polyethylene glycol (PEG) core.
View Article and Find Full Text PDFMicroglial functioning depends on Ca signaling. By using Ca sensitive fluorescence dye, we studied how inhibition of mitochondrial respiration changed spontaneous Ca signals in soma of microglial cells from 5-7-day-old rats grown under normoxic and mild-hypoxic conditions. In microglia under normoxic conditions, metformin or rotenone elevated the rate and the amplitude of Ca signals 10-15 min after drug application.
View Article and Find Full Text PDFRecent evidence suggests that metformin and phenformin may exert beneficial effects against neuronal injury in the ischemic brain, however, the difference of action between these two drugs and the molecular mechanism of such protection is not clear. In this study, we investigated whether mild hypoxia-affected neurons exhibit changes in cytosolic calcium handling and whether metformin and phenformin exert any effect on calcium homeostasis in hypoxia-affected neurons. Cultured primary rat cortical cells were stained with calcium sensitive dye Oregon Green 488 BAPTA-1 AM and spontaneous calcium dependent changes of fluorescence were recorded.
View Article and Find Full Text PDFHydrogel-supported neural cell cultures are more in vivo-relevant compared to monolayers formed on glass or plastic substrates. However, there is a lack of synthetic microenvironment available for obtaining standardized and easily reproducible cultures characterized by tissue-mimicking cell composition, cell-cell interactions, and functional networks. Synthetic peptides representing the biological properties of the extracellular matrix (ECM) proteins have been reported to promote the adhesion-driven differentiation and functional maturation of neural cells.
View Article and Find Full Text PDFThe superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus.
View Article and Find Full Text PDFAlthough the firing patterns of collision-detecting neurons have been described in detail in several species, the mechanisms generating responses in these neurons to visual objects on a collision course remain largely unknown. This is partly due to the limited number of intracellular recordings from such neurons, particularly in vertebrate species. By employing patch recordings in a novel integrated frog eye-tectum preparation we tested the hypothesis that OFF retinal ganglion cells were driving the responses to visual objects on a collision course in the frog optic tectum neurons.
View Article and Find Full Text PDFWe propose an in vitro eye-tectum preparation enabling whole-cell recordings of tectal neurons combined with visual stimulation. The recordings were made from the tectum, which was cut in order to facilitate access to the cell bodies located in the inner tectal layers. The preparation remains viable for up to 5h while routine prolonged whole-cell recordings could be obtained from tectal neurons.
View Article and Find Full Text PDFNeuronal potential-dependent membrane currents are important in shaping the integration of synaptic inputs. Our recordings in voltage-clamp mode indicate that the small fast inward currents (spikelet currents), which were several times smaller than action potential (AP) currents, are a distinguished feature of 33% of neurons from 8 to 6 layers of the frog tectum. Out of all neuronal types described previously, only phasic cells and neurons with 'sag' in response to hyperpolarizing step current injection did not show spikelet currents.
View Article and Find Full Text PDFWhole-cell recordings from frog tectal slices revealed different types of neuronal firing patterns in response to prolonged current injection. The patterns included regular spiking without adaptation, accelerating firing, adapting spiking, repetitive bursting and phasic response with only one spike. The observed firing patterns are similar to those found in the mammalian superior colliculus.
View Article and Find Full Text PDF