Publications by authors named "Natasa Segatin"

The dielectric properties of six refined edible oils with different fatty-acid compositions were determined for oils incubated at 180 °C up to 40 h. The oil degradation was evaluated by the dielectric dispersion and dielectric loss in the frequency range from 40 Hz to 2 MHz at 25 °C, refractive index, density, saponification number, and specific absorption coefficient at 232 and 268 nm. The dependence of the dielectric properties on frequency has been evaluated with Corach, Cole-Cole, and the universal power law models, giving the novel strategies for the interpretation of the dielectric spectra of thermally treated oils.

View Article and Find Full Text PDF

Model vegetable oil mixtures with significantly different basic oil quality indices (free fatty acid, iodine, and Totox values) were prepared by adding oleic acids, synthetic saturated triglycerides, or oxidized safflower oil ( Carthamus tinctorius ) to the oleic type of sunflower oil. Dielectric constants, dielectric loss factors, quality factors, and electrical conductivities of model lipids were determined at frequencies from 50 Hz to 2 MHz and at temperatures from 293.15 to 323.

View Article and Find Full Text PDF

The rate of reaction of phenolic antioxidants with DPPH depends on solvent composition. The rate constants can differ by more than two orders of magnitude for the same phenolic compound. Reactions are faster in alcohols than in ethyl acetate that is used routinely for the analysis of antioxidant potential (AOP) of nonpolar samples such as vegetable oils.

View Article and Find Full Text PDF

The compounds 4-vinylphenol (4-VP), 4-vinylguaiacol (4-VG), 4-vinylsyringol (4-VS) and 4-vinylcatechol (4-VC) were prepared by thermal decarboxylation of the corresponding hydroxycinnamic acids p-coumaric, ferulic, sinapic and caffeic acid, respectively. For confirmation of the synthesised products LC-MS followed by NMR analysis was used. To evaluate their antioxidant potential, their reducing power and efficiency in scavenging the alkylperoxyl radical generated in an emulsion system, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and the superoxide anion radical (O2(-)) were determined.

View Article and Find Full Text PDF