Publications by authors named "Natasa Mehle"

Plant viruses pose a significant threat to agriculture. Several are stable outside their hosts, can enter water bodies and remain infective for prolonged periods of time. Even though the quality of irrigation water is of increasing importance in the context of plant health, the presence of plant viruses in irrigation waters is understudied.

View Article and Find Full Text PDF

Nanopore sequencing has proven to be a useful tool for the generic detection of plant viruses, especially in laboratories working with small number of samples. In this chapter, we describe the steps prior to library preparation as well as the library preparation itself, which we found provides comparable results to Illumina sequencing.

View Article and Find Full Text PDF

Flavescence dorée (FD) phytoplasma from 16SrV-C and -D subgroups cause severe damage to grapevines throughout Europe. This phytoplasma is transmitted from grapevine to grapevine by the sap-sucking leafhopper . European black alder and clematis serve as perennial plant reservoirs for 16SrV-C phytoplasma strains, and their host range has recently been extended to hazelnuts.

View Article and Find Full Text PDF

Viticulture is a traditional branch of agriculture in the Czech Republic. Grapevines (Vitis vinifera L.) are cultivated on more than 18,000 hectares in the wine-growing regions of Bohemia and South Moravia.

View Article and Find Full Text PDF

Tomato brown rugose fruit virus (ToBRFV) has recently emerged as a major disease of tomatoes and peppers. ToBRFV is a seed- and contact-transmitted virus. In Slovenia, ToBRFV RNA was detected in samples of wastewater, river, and water used to irrigate plants.

View Article and Find Full Text PDF

Background: In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has accelerated the development of virus concentration and molecular-based virus detection methods, monitoring systems and overall approach to epidemiology. Early into the pandemic, wastewater-based epidemiology started to be employed as a tool for tracking the virus transmission dynamics in a given area. The complexity of wastewater coupled with a lack of standardized methods led us to evaluate each step of the analysis individually and see which approach gave the most robust results for SARS-CoV-2 monitoring in wastewater.

View Article and Find Full Text PDF

As the causal agent of the grapevine yellows disease Bois noir, ' Phytoplasma solani' has a major economic impact on grapevines. To improve the control of Bois noir, it is critical to understand the very complex epidemiological cycles that involve the multiple ". P.

View Article and Find Full Text PDF

species represent a threat to solanaceous crops worldwide, due to their extreme stability and because they are seed borne. In particular, recent outbreaks of tomato brown rugose fruit virus in tomato and pepper crops led to the establishment of prompt control measures, and the need for reliable diagnosis was urged. Another member of the genus, tomato mottle mosaic virus, has recently gained attention due to reports in different continents and its common features with tomato brown rugose fruit virus.

View Article and Find Full Text PDF

High-throughput sequencing (HTS) technologies and bioinformatic analyses are of growing interest to be used as a routine diagnostic tool in the field of plant viruses. The reliability of HTS workflows from sample preparation to data analysis and results interpretation for plant virus detection and identification must be evaluated (verified and validated) to approve this tool for diagnostics. Many different extraction methods, library preparation protocols, and sequence and bioinformatic pipelines are available for virus sequence detection.

View Article and Find Full Text PDF

Viruses cause a big fraction of economically important diseases in major crops, including tomato. In the past decade (2011-2020), many emerging or re-emerging tomato-infecting viruses were reported worldwide. In this period, 45 novel viral species were identified in tomato, 14 of which were discovered using high-throughput sequencing (HTS).

View Article and Find Full Text PDF

Tomato production worldwide is affected by numerous plant virus species. The early and accurate detection of viruses is a critical step for disease control. However, the simultaneous detection of the most known tomato viruses can be difficult because of the high number and diversity of tomato-infecting viruses.

View Article and Find Full Text PDF

Phytoplasmas of the 16SrIII group are wide spread, and have a broad plant host range. Among these, ' phytoplasma pruni' (' P. pruni'; phytoplasmas of 16SrIII subgroup A) can cause serious diseases in species and ' P.

View Article and Find Full Text PDF

Viruses represent one of the most important threats to agriculture. Several viral families include highly stable pathogens, which remain infective and can be transported long distances in water. The diversity of plant viruses in wastewater remains understudied; however, their potential impact is increasing with the increased irrigation usage of reclaimed wastewater.

View Article and Find Full Text PDF

In recent years, pepino mosaic virus (PepMV) has rapidly evolved from an emerging virus to an endemic pathogen, as it causes significant loses to tomato crops worldwide. At present, the main control strategy for prevention of PepMV disease in tomato production remains based on strict hygiene measures. To prevent damage caused by PepMV, cross-protection is used in some countries.

View Article and Find Full Text PDF

While one of the biggest problems we are facing today is water scarcity, enormous quantities of water are still being used in irrigation. If contaminated, this water can act as an effective pathway for the spread of disease-causing agents, like viruses. Here, we present a novel, environmentally friendly method known as cold atmospheric plasma for inactivation of viruses in water used in closed irrigation systems.

View Article and Find Full Text PDF

High-throughput sequencing has dramatically broadened the possibilities for plant virus research and diagnostics, enabling discovery of new or obscure viruses, and virus strains and rapid sequencing of their genomes. In this research, we employed high-throughput sequencing to discover a new virus infecting tomato, , ), which was first discovered at the beginning of 20th century in the United Kingdom in cultivated henbane. A field tomato plant with severe necrotic symptoms of unknown etiology was sampled in Slovenia and high-throughput sequencing analysis using small RNA and ribosomal RNA depleted total RNA approaches revealed a mixed infection with (, ), (, ) and henbane mosaic virus in the sample.

View Article and Find Full Text PDF

Digital PCR-based methods, such as droplet digital PCR, are one of the best tools for determination of absolute nucleic-acid copy numbers. These techniques avoid the need for reference materials with known target concentrations. Compared to real-time PCR, they provide higher accuracy of quantification at low target concentrations, and have higher resilience to inhibitors.

View Article and Find Full Text PDF

Viruses represent the most abundant and diverse of the biological entities in environmental waters, including the seas and probably also freshwater systems. They are important players in ecological networks in waters and influence global biochemical cycling and community composition dynamics. Among the many diverse viruses from terrestrial environments found in environmental waters, some are plant, animal, and/or human pathogens.

View Article and Find Full Text PDF

RNA viruses have a great potential for high genetic variability and rapid evolution that is generated by mutation and recombination under selection pressure. This is also the case of Potato virus Y (PVY), which comprises a high diversity of different recombinant and non-recombinant strains. Consequently, it is hard to develop reverse transcription real-time quantitative PCR (RT-qPCR) with the same amplification efficiencies for all PVY strains which would enable their equilibrate quantification; this is specially needed in mixed infections and other studies of pathogenesis.

View Article and Find Full Text PDF