Publications by authors named "Natarajan Duraipandy"

Adipose thermogenesis has been actively investigated as a therapeutic target for improving metabolic dysfunction in obesity. However, its applicability to middle-aged and older populations, which bear the highest obesity prevalence in the United States (approximately 40%), remains uncertain due to age-related decline in thermogenic responses. In this study, we investigated the effects of chronic thermogenic stimulation using the β3-adrenergic (AR) agonist CL316,243 (CL) on systemic metabolism and adipose function in aged (18-month-old) C57BL/6JN mice.

View Article and Find Full Text PDF

Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction.

View Article and Find Full Text PDF

Adipose thermogenesis has been actively investigated as a therapeutic target for improving metabolic dysfunction in obesity. However, its applicability to middle-aged and older populations, which bear the highest obesity prevalence in the US (approximately 40%), remains uncertain due to age-related decline in thermogenic responses. In this study, we investigated the effects of chronic thermogenic stimulation using the β3-adrenergic (AR) agonist CL316,243 (CL) on systemic metabolism and adipose function in aged (18-month-old) C57BL/6JN mice.

View Article and Find Full Text PDF

Dicalcium silicate (CaSiO, CS) has osteogenic potential but induces macrophagic inflammation. Mitochondrial function plays a vital role in macrophage polarization and macrophagic inflammation. The mitochondrial function of CS-treated macrophages is still unclear.

View Article and Find Full Text PDF

Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties.

View Article and Find Full Text PDF

The redox state of the endothelial cells plays a key role in the regulation of the angiogenic process. The modulation of the redox state of endothelial cells (ECs) could be a viable target to alter angiogenic response. In the present work, we synthesized a redox modulator by caging 5-hydroxy 2-methyl 1, 4-napthoquinone (Plumbagin) on silver nano framework (PCSN) for tunable reactive oxygen species (ROS) inductive property and tested its role in ECs during angiogenic response in physiological and stimulated conditions.

View Article and Find Full Text PDF

The effective wound management strategies depends on identification and manipulation of the molecular defects in the pathophysiology of wound. Poor vascularization, protease susceptibility and microbial invasion at wound site affect the early wound closure. Hence, an efficient wound dressing material needs to promote angiogenesis, control proteolytic activity and microbial attack.

View Article and Find Full Text PDF

Despite being a favorable candidate in wound dressing, collagen based biomaterials possess inferior mechanical properties which limit their usage. Collagen based hybrid nanofibers with other polymers can enhance their mechanical strength as well as their biological properties. Herein, we report collagen-silk fibroin hybrid nanofibers incorporated with fenugreek, an antioxidant, as a bioactive wound dressing material.

View Article and Find Full Text PDF

Bacterial colonization on medical devices is a major concern in the healthcare industry. In the present study, we report synthesis of environmental sustainable reduced graphene oxide (rGO) on the large scale through biosynthetic route and its potential application for antibacterial coating on medical devices. HRTEM image depicts formation of graphene nanosheet, while DLS and ζ potential studies reveal that in aqueous medium the average hydrodynamic size and surface charge of rGO are 4410 ± 116 nm and -25.

View Article and Find Full Text PDF

The present study illustrates the progress of the wheat grass bioactive-reinforced collagen-based aerogel system as an instructive scaffold for collagen turnover and angiogenesis for wound healing applications. The reinforcement of wheat grass bioactives in collagen resulted in the design and development of aerogels with enhanced physicochemical and biomechanical properties due to the intermolecular interaction between the active growth factors of wheat grass and collagen fibril. Differential scanning calorimetry analysis revealed an enhanced denaturation temperature when compared to those of native collagen aerogels.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of silver nanoparticles (AgNPs) of different sizes (10nm, 35nm, 55nm) in creating a collagen-based scaffold for tissue engineering and wound healing.
  • AgNPs were synthesized using pectin through a microwave method, and their incorporation improved the properties of collagen scaffolds, such as increased denaturation temperature and mechanical strength.
  • Findings indicate that the 10nm Ag-pectin nanoparticles enhance both antibacterial activity and cell viability for keratinocytes, suggesting potential use in biomedical applications.
View Article and Find Full Text PDF

A novel approach on incorporation of divalent species such as Mg, Ca and Sr into the titania nanostructures formed on Ti metal surface and their comparative study on enhancement of bioactivity, protein adsorption and cell compatibility is reported. When treated with hydrogen peroxide, Ti metal forms hydrogen titanate. On subsequent treatment with Mg or Ca or Sr nitrate solutions, respective ions are incorporated into hydrogen titanate layer, and heat treatment leads to titania decorated with these ions.

View Article and Find Full Text PDF

In recent years, several fluorenylmethoxycarbonyl (Fmoc)-functionalized amino acids and peptides have been used to construct hydrogels, which find a wide range of applications. Although several hydrogels have been prepared from mono Fmoc-functionalized amino acids, herein, we demonstrate the importance of an additional Fmoc-moiety in the hydrogelation of double Fmoc-functionalized L-lysine [Fmoc(Nα)-L-lysine(NεFmoc)-OH, (Fmoc-K(Fmoc))] as a low molecular weight gelator (LMWG). Unlike other Fmoc-functionalized amino acid gelators, Fmoc-K(Fmoc) exhibits pH-controlled ambidextrous gelation (hydrogelation at different pH values as well as organogelation), which is significant among the gelators.

View Article and Find Full Text PDF