Hepatic steatosis is a central phenotype in multi-system metabolic dysfunction and is increasing in parallel with the obesity pandemic. We use a translational approach integrating clinical phenotyping and outcomes, circulating proteomics, and tissue transcriptomics to identify dynamic, functional biomarkers of hepatic steatosis. Using multi-modality imaging and broad proteomic profiling, we identify proteins implicated in the progression of hepatic steatosis that are largely encoded by genes enriched at the transcriptional level in the human liver.
View Article and Find Full Text PDFPolygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer.
View Article and Find Full Text PDFObjective: Genetic studies have suggested that the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine have a causal association with type 2 diabetes (T2D). However, inferences are based on a limited number of genetic loci associated with BCAAs.
Methods: Instrumental variables (IVs) for each BCAA were constructed and validated using large well-powered data sets and their association with T2D was tested using a two-sample inverse-variance weighted Mendelian randomization approach.
Background And Aims: Despite interest in the use of polygenic risk scores (PRS) for predicting coronary heart disease (CHD) risk, the clinical utility of PRS compared to conventional risk factors has not been demonstrated. We compared the performance of PRS with that of high-sensitivity C-reactive protein (hsCRP) in two well-established cohorts.
Methods: The study population included individuals of European ancestry free of baseline CHD from ARIC (N = 13,113) and the Framingham Offspring Study (FHS) (N = 2,696).
All of Us is a biorepository aiming to advance biomedical research by providing various types of data in diverse human populations. Here we present a demonstration project validating the program's genomic data in 98,622 participants. We sought to replicate known genetic associations for three diseases (atrial fibrillation [AF], coronary artery disease, type 2 diabetes [T2D]) and two quantitative traits (height and low-density lipoprotein [LDL]) by conducting common and rare variant analyses.
View Article and Find Full Text PDFSome autoimmune (AI) conditions affect white blood cell (WBC) counts. Whether a genetic predisposition to AI disease associates with WBC counts in populations expected to have low numbers of AI cases is not known. We developed genetic instruments for 7 AI diseases using genome-wide association study summary statistics.
View Article and Find Full Text PDFContext: A genetic predisposition to lower thyrotropin (TSH) levels is associated with increased atrial fibrillation (AF) risk through undefined mechanisms.
Objective: Defining the genetic mediating mechanisms could lead to improved targeted therapies to mitigate AF risk.
Methods: We used 2-sample mendelian randomization (MR) to test associations between TSH-associated single-nucleotide variations and 16 candidate mediators.
The Rho family of guanosine triphosphatases (GTPases) is composed of members of the Ras superfamily of proteins. They are GTP-bound molecules with a modest intrinsic GTPase activity that can be accelerated upon activation/localization of specialized guanine nucleotide exchange factors. Members of this family act as molecular switches and are required for coordinated cytoskeletal rearrangements that are crucial in a set of specialized functions of mammalian stem cells.
View Article and Find Full Text PDFIt is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles.
View Article and Find Full Text PDF