Publications by authors named "Natanael C Costa"

We study the impact of the Rashba spin-orbit coupling (RSOC) on the stability of charge-density wave (CDW) in systems with large electron-phonon coupling (EPC). Here, the EPC is considered in the framework of the Holstein model at the half-filled square lattice. We obtain the phase diagram of the Rashba-Holstein model using the Hartree-Fock mean-field theory, and identify the boundaries of the CDW and Rashba metal phases.

View Article and Find Full Text PDF

Despite being relevant to better understand the properties of honeycomblike systems, as graphene-based compounds, the electron-phonon interaction is commonly disregarded in theoretical approaches. That is, the effects of phonon fields on interacting Dirac electrons is an open issue, in particular when investigating long-range ordering. Thus, here we perform unbiased quantum Monte Carlo simulations to examine the Hubbard-Holstein model (HHM) in the half-filled honeycomb lattice.

View Article and Find Full Text PDF

With the purpose of investigating coexistence between magnetic order and superconductivity, we consider a model in which conduction electrons interact with each other, via an attractive Hubbard on-site coupling U, and with local moments on every site, via a Kondo-like coupling, J. The model is solved on a simple cubic lattice through a Hartree-Fock approximation, within a 'semi-classical' framework which allows spiral magnetic modes to be stabilized. For a fixed electronic density, n , the small J region of the ground state (T  =  0) phase diagram displays spiral antiferromagnetic (SAFM) states for small U.

View Article and Find Full Text PDF