The Spike glycoprotein of SARS-CoV-2 mediates viral entry into the host cell via the interaction between its receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2). Spike RBD has been reported to adopt two primary conformations, a closed conformation in which the binding site is shielded and unable to interact with ACE2, and an open conformation that is capable of binding ACE2. Many structural studies have probed the conformational space of the homotrimeric Spike from SARS-CoV-2.
View Article and Find Full Text PDFThe SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide, reaching near fixation in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and on cells rendered permissive by ectopic expression of human ACE2 or of ACE2 orthologs from various mammals, including Chinese rufous horseshoe bat and Malayan pangolin. D614G did not alter S protein synthesis, processing, or incorporation into SARS-CoV-2 particles, but D614G affinity for ACE2 was reduced due to a faster dissociation rate.
View Article and Find Full Text PDFThe membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood.
View Article and Find Full Text PDFBioenergetic reactions in chloroplasts and mitochondria are catalyzed by large multi-subunit membrane proteins. About two decades ago it became clear that several of these large membrane proteins further associate into supercomplexes and since then a number of new ones have been described. In this review we focus on supercomplexes involved in light harvesting and electron transfer in the primary reactions of oxygenic photosynthesis and on the mitochondrial supercomplexes that catalyze electron transfer and ATP synthesis in oxidative phosphorylation.
View Article and Find Full Text PDFMembrane attack complex/perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins constitute a major superfamily of pore-forming proteins that act as bacterial virulence factors and effectors in immune defence. Upon binding to the membrane, they convert from the soluble monomeric form to oligomeric, membrane-inserted pores. Using real-time atomic force microscopy (AFM), electron microscopy (EM), and atomic structure fitting, we have mapped the structure and assembly pathways of a bacterial CDC in unprecedented detail and accuracy, focussing on suilysin from Streptococcus suis.
View Article and Find Full Text PDFOxidative phosphorylation (OXPHOS) is the main source of energy in eukaryotic cells. This process is performed by means of electron flow between four enzymes, of which three are proton pumps, in the inner mitochondrial membrane. The energy accumulated in the proton gradient over the inner membrane is utilized for ATP synthesis by a fifth OXPHOS complex, ATP synthase.
View Article and Find Full Text PDFGlobulins are an important group of seed storage proteins in dicotyledonous plants. They are synthesized during seed development, assembled into very compact protein complexes, and finally stored in protein storage vacuoles (PSVs). Here, we report a proteomic investigation on the native composition and structure of cruciferin, the 12 S globulin of Brassica napus.
View Article and Find Full Text PDFThe respirasome is a multisubunit supercomplex of the respiratory chain in mitochondria. Here we report the 3D reconstruction of the bovine heart respirasome, composed of dimeric complex III and single copies of complex I and IV, at about 2.2-nm resolution, determined by cryoelectron tomography and subvolume averaging.
View Article and Find Full Text PDFThe F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are highly conserved across prokaryotes and eukaryotes.
View Article and Find Full Text PDFOngoing progress in electron microscopy (EM) offers now an opening to visualize cells at the nanoscale by cryo-electron tomography (ET). Large protein complexes can be resolved at near-atomic resolution by single particle averaging. Some examples from mitochondria and chloroplasts illustrate the possibilities with an emphasis on the membrane organization.
View Article and Find Full Text PDFThe five complexes (complexes I-V) of the oxidative phosphorylation (OXPHOS) system of mitochondria can be extracted in the form of active supercomplexes. Single-particle electron microscopy has provided 2D and 3D data describing the interaction between complexes I and III, among I, III and IV and in a dimeric form of complex V, between two ATP synthase monomers. The stable interactions are called supercomplexes which also form higher-ordered oligomers.
View Article and Find Full Text PDFThe fine structure of intact, close-to-spherical mitochondria from the alga Polytomella was visualized by dual-axis cryo-electron tomography. The supramolecular organization of dimeric ATP synthase in the cristae membranes was investigated by averaging subvolumes of tomograms and 3D details at approximately 6 nm resolution were revealed. Oligomeric ATP synthase is composed of rows of dimers at 12 nm intervals; the dimers make a slight angle along the row.
View Article and Find Full Text PDFThe organization of the oxidative phosphorylation (OXPHOS) system within the inner mitochondrial membrane appears to be far more complicated than previously thought. In particular, the individual protein complexes of the OXPHOS system (complexes I to V) were found to specifically interact forming defined supramolecular structures. Blue-native polyacrylamide gel electrophoresis and single particle electron microscopy proved to be especially valuable in studying the so-called "respiratory supercomplexes".
View Article and Find Full Text PDFThe projection structures of complex I and the I+III2 supercomplex from the C4 plant Zea mays were determined by electron microscopy and single particle image analysis to a resolution of up to 11 A. Maize complex I has a typical L-shape. Additionally, it has a large hydrophilic extra-domain attached to the centre of the membrane arm on its matrix-exposed side, which previously was described for Arabidopsis and which was reported to include carbonic anhydrase subunits.
View Article and Find Full Text PDFThere is increasing evidence now that F(1)F(0) ATP synthase is arranged in dimers in the inner mitochondrial membrane of several organisms. The dimers are also considered to be the building blocks of oligomers. It was recently found that the monomers in beef and the alga Polytomella ATP synthase dimer make an angle of approximately 40 degrees and approximately 70 degrees, respectively.
View Article and Find Full Text PDFThe intricate, heavily folded inner membrane of mitochondria houses the respiratory chain complexes. These complexes, together with the ATP synthase complex, are responsible for energy production, which is stored as ATP. The structure of the individual membrane-bound protein components has been well characterized.
View Article and Find Full Text PDFComplex I of Arabidopsis includes five structurally related subunits representing gamma-type carbonic anhydrases termed CA1, CA2, CA3, CAL1, and CAL2. The position of these subunits within complex I was investigated. Direct analysis of isolated subcomplexes of complex I by liquid chromatography linked to tandem mass spectrometry allowed the assignment of the CA subunits to the membrane arm of complex I.
View Article and Find Full Text PDFRespiration in all cells depends upon synthesis of ATP by the ATP synthase complex, a rotary motor enzyme. The structure of the catalytic moiety of ATP synthase, the so-called F(1) headpiece, is well established. F(1) is connected to the membrane-bound and ion translocating F(0) subcomplex by a central stalk.
View Article and Find Full Text PDF