Publications by authors named "Natalya P Bondar"

Neuroinflammation in the early postnatal period can disturb trajectories of the completion of normal brain development and can lead to mental illnesses, such as depression, anxiety disorders, and personality disorders later in life. In our study, we focused on evaluating short- and long-term effects of neonatal inflammation induced by lipopolysaccharide, poly(I:C), or their combination in female and male C57BL/6 and BTBR mice. We chose the BTBR strain as potentially more susceptible to neonatal inflammation because these mice have behavioral, neuroanatomical, and physiological features of autism spectrum disorders, an abnormal immune response, and several structural aberrations in the brain.

View Article and Find Full Text PDF

Early-life stress (ELS) is associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and can increase the risk of psychiatric disorders later in life. The aim of this study was to investigate the influence of ELS on baseline HPA axis functioning and on the response to additional stress in adolescent male mice of strains C57BL/6J and BTBR. As a model of ELS, prolonged separation of pups from their mothers (for 3 h once a day: maternal separation [MS]) was implemented.

View Article and Find Full Text PDF

The research on strain-, sex-, and stress-specific differences in structural and functional connectivity of the brain is important for elucidating various behavioral features and etiologies of psychiatric disorders. Socially impaired BTBR mice are considered a model of autism spectrum disorders. Here we present high-resolution magnetic resonance imaging data from the brain of 89 adolescent mice (C57BL/6J and BTBR) in axial, sagittal, and coronal views.

View Article and Find Full Text PDF

Lately, the development of various mental illnesses, such as depression, personality disorders, and autism spectrum disorders, is often associated with traumatic events in childhood. Nonetheless, the mechanism giving rise to this predisposition is still unknown. Because the development of a disease often depends on a combination of a genetic background and environment, we decided to evaluate the effect of early-life stress on BTBR mice, which have behavioral, neuroanatomical, and physiological features of autism spectrum disorders.

View Article and Find Full Text PDF

Early-life stress affects neuronal plasticity of the brain regions participating in the implementation of social behavior. Our previous studies have shown that brief and prolonged separation of pups from their mothers leads to enhanced social behavior in adult female mice. The goal of the present study was to characterize the expression of genes (which are engaged in synaptic plasticity) , , , and in the prefrontal cortex and dorsal hippocampus of adult female mice with a history of early-life stress.

View Article and Find Full Text PDF

The hippocampus is a crucial part of the limbic system involved both in cognitive processing and in the regulation of responses to stress. Adverse experiences early in life can disrupt hippocampal development and lead to impairment of the hypothalamic-pituitary-adrenal axis response to subsequent stressors. In our study, two types of early-life stress were used: prolonged separation of pups from their mothers (for 3 hours/day, maternal separation, MS) and brief separation (for 15 minutes/day, handling, HD).

View Article and Find Full Text PDF

Stressful events in an early postnatal period have critical implications for the individual's life and can increase later risk for psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal day 2 through 14.

View Article and Find Full Text PDF

Background: Maternal separation models in rodents are widely used to establish molecular mechanisms underlying prolonged effects of early life adversity on neurobiological and behavioral outcomes in adulthood. However, global epigenetic signatures following early life stress in these models remain unclear.

Results: In this study, we carried out a ChIP-seq analysis of H3K4 trimethylation profile in the prefrontal cortex of adult male mice with a history of early life stress.

View Article and Find Full Text PDF

The brain-derived neurotrophic factor (BDNF) is a key regulator of neural development and plasticity. Longterm changes in the BDNF pathway are associated with childhood adversity and adult depression symptoms. Initially, stress-induced decreases in the BDNF pathway were found in some studies, but subsequent reports indicated the relationship between stress and BDNF to be much more complex, and the concept was significantly revised.

View Article and Find Full Text PDF

Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety.

View Article and Find Full Text PDF

There is ample experimental evidence supporting the hypothesis that the brain serotonergic system is involved in the control of chronic social defeat stress (CSDS), depression, and anxiety. The study aimed to analyze mRNA levels of the serotonergic genes in the raphe nuclei of midbrain that may be associated with chronic social defeats consistently shown by male mice in special experimental settings. The serotonergic genes were the Tph2, Sert, Maoa, and Htr1a.

View Article and Find Full Text PDF