Enterotoxigenic (ETEC) are endemic in low-resource settings and cause robust secretory diarrheal disease in children less than five years of age. ETEC cause secretory diarrhea by producing the heat-stable (ST) and/or heat-labile (LT) enterotoxins. Recent studies have shown that ETEC can be carried asymptomatically in children and adults, but how ETEC subvert mucosal immunity to establish intestinal residency remains unclear.
View Article and Find Full Text PDFEnterotoxigenic (ETEC) are a significant cause of childhood diarrhea in low-resource settings. ETEC are defined by the production of heat-stable enterotoxin (ST) and/or heat-labile enterotoxin (LT), which alter intracellular cyclic nucleotide signaling and cause the secretion of water and electrolytes into the intestinal lumen. ETEC take cues from chemicals (e.
View Article and Find Full Text PDFEnterotoxigenic Escherichia coli (ETEC) remain a major cause of diarrheal mortality and morbidity in children in low-resource settings. Few studies have explored the consequences of simultaneous intoxication with heat-stable enterotoxin (ST) and heat-labile enterotoxin (LT) despite the increased prevalence of wild ETEC isolates expressing both toxins. We therefore used a combination of tissue culture and murine models to explore the impact of simultaneous ST + LT intoxication on epithelial and myeloid cells.
View Article and Find Full Text PDFEnterotoxigenic (ETEC) is a major diarrheal pathogen in children in low- to middle-income countries. Previous studies have identified heat-stable enterotoxin (ST)-producing ETEC as one of the major diarrhea-causing pathogens in children younger than five years. In this study, we examined iron and zinc binding by both human and porcine ST variants and determined how host metallothionein could detoxify ST.
View Article and Find Full Text PDFis a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against of critical importance. We have previously demonstrated that immunization with multivalent outer membrane vesicles (OMV) derived from provide significant protection against pneumonic melioidosis.
View Article and Find Full Text PDF