Strong gradient systems can improve the signal-to-noise ratio of diffusion MRI measurements and enable a wider range of acquisition parameters that are beneficial for microstructural imaging. We present a comprehensive diffusion MRI dataset of 26 healthy participants acquired on the MGH-USC 3 T Connectome scanner equipped with 300 mT/m maximum gradient strength and a custom-built 64-channel head coil. For each participant, the one-hour long acquisition systematically sampled the accessible diffusion measurement space, including two diffusion times (19 and 49 ms), eight gradient strengths linearly spaced between 30 mT/m and 290 mT/m for each diffusion time, and 32 or 64 uniformly distributed directions.
View Article and Find Full Text PDFIntroduction: White matter damage in the visual pathway is common in multiple sclerosis (MS) and is associated with retinal thinning, although the underlying mechanism of association remains unclear. The goal of this work was to evaluate the presence and extent of white matter tract integrity (WMTI) alterations in the optic radiation (OR) in people with MS and to investigate the association between WMTI metrics and retinal thinning in the eyes of MS patients without a history of optic neuritis (ON) as measured by optical coherence tomography (OCT). We hypothesized that WMTI metrics would reflect axonal damage that occurs in the OR in MS, and that axonal alterations revealed by WMTI would be associated with retinal thinning.
View Article and Find Full Text PDFAxon diameter and density are important microstructural metrics that offer valuable insight into the structural organization of white matter throughout the human brain. We report the systematic acquisition and analysis of a comprehensive diffusion MRI data set acquired with 300 mT/m maximum gradient strength in a cohort of 20 healthy human subjects that yields distinct and consistent patterns of axon diameter index in white matter tracts of arbitrary orientation. We use a straightforward, previously validated approach to estimating indices of axon diameter and volume fraction that involves interpolating the diffusion signal perpendicular to the principal fiber orientation and fitting a three-compartment model of intra-axonal, extra-axonal and free water diffusion.
View Article and Find Full Text PDFObjective: To evaluate alterations in apparent axon diameter and axon density obtained by high-gradient diffusion MRI in the corpus callosum of MS patients and the relationship of these advanced diffusion MRI metrics to neurologic disability and cognitive impairment in MS.
Methods: Thirty people with MS (23 relapsing-remitting MS [RRMS], 7 progressive MS [PMS]) and 23 healthy controls were scanned on a human 3-tesla (3T) MRI scanner equipped with 300 mT/m maximum gradient strength using a comprehensive multishell diffusion MRI protocol. Data were fitted to a three-compartment geometric model of white matter to estimate apparent axon diameter and axon density in the midline corpus callosum.
The role of semantic features, which are distinctive (e.g., a zebra's stripes) or shared (e.
View Article and Find Full Text PDF