Nearly all aerobic organisms are equipped with catalases, powerful enzymes scavenging hydrogen peroxide and facilitating defense against harmful reactive oxygen species. In trypanosomatids, this enzyme was not present in the common ancestor, yet it had been independently acquired by different lineages of monoxenous trypanosomatids from different bacteria at least three times. This observation posited an obvious question: why was catalase so "sought after" if many trypanosomatid groups do just fine without it? In this work, we analyzed subcellular localization and function of catalase in Leptomonas seymouri.
View Article and Find Full Text PDFMost trypanosomatid flagellates do not have catalase. In the evolution of this group, the gene encoding catalase has been independently acquired at least three times from three different bacterial groups. Here, we demonstrate that the catalase of was obtained by horizontal gene transfer from Gammaproteobacteria, extending the list of known bacterial sources of this gene.
View Article and Find Full Text PDFCatalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae.
View Article and Find Full Text PDFUridine insertion/deletion (U-indel) editing of mitochondrial mRNA, unique to the protistan class Kinetoplastea, generates canonical as well as potentially non-productive editing events. While the molecular machinery and the role of the guide (g) RNAs that provide required information for U-indel editing are well understood, little is known about the forces underlying its apparently error-prone nature. Analysis of a gRNA:mRNA pair allows the dissection of editing events in a given position of a given mitochondrial transcript.
View Article and Find Full Text PDFMaxicircles of all kinetoplastid flagellates are functional analogs of mitochondrial genome of other eukaryotes. They consist of two distinct parts, called the coding region and the divergent region (DR). The DR is composed of highly repetitive sequences and, as such, remains the least explored segment of a trypanosomatid genome.
View Article and Find Full Text PDFIn this work, we describe the first -infecting leishbunyavirus-the first virus other than (LRV) found in trypanosomatid parasites. Its host is , a human pathogen causing infections with a wide range of manifestations from asymptomatic to severe visceral disease. This virus (LBV1) possesses many characteristic features of leishbunyaviruses, such as tripartite organization of its RNA genome, with ORFs encoding RNA-dependent RNA polymerase, surface glycoprotein, and nucleoprotein on L, M, and S segments, respectively.
View Article and Find Full Text PDFProtein phosphorylation/dephosphorylation is an important regulatory mechanism that controls many key physiological processes. Numerous pathogens successfully use kinases and phosphatases to internalize, replicate, and survive, modifying the host's phosphorylation profile or signal transduction pathways. Multiple phosphatases and kinases from diverse bacterial pathogens have been implicated in human infections before.
View Article and Find Full Text PDFHere we report that trypanosomatid flagellates of the genus Blastocrithidia possess catalase. This enzyme is not phylogenetically related to the previously characterized catalases in other monoxenous trypanosomatids, suggesting that their genes have been acquired independently. Surprisingly, Blastocrithidia catalase is less enzymatically active, compared to its counterpart from Leptomonas pyrrhocoris, posing an intriguing biological question why this gene has been retained in the evolution of trypanosomatids.
View Article and Find Full Text PDFBackground: Leishmania virulence factors responsible for the complicated epidemiology of the various leishmaniases remain mainly unidentified. This study is a characterization of a gene previously identified as upregulated in two of three overlapping datasets containing putative factors important for Leishmania's ability to establish mammalian intracellular infection and to colonize the gut of an insect vector.
Methodology/principal Findings: The investigated gene encodes ATP/GTP binding motif-containing protein related to Leishmania development 1 (ALD1), a cytosolic protein that contains a cryptic ATP/GTP binding P-loop.
In the present work, we investigated molecular mechanisms governing thermal resistance of a monoxenous trypanosomatid Crithidia luciliae thermophila, which we reclassified as a separate species C. thermophila. We analyzed morphology, growth kinetics, and transcriptomic profiles of flagellates cultivated at low (23°C) and elevated (34°C) temperature.
View Article and Find Full Text PDFThe catalase gene is a virtually ubiquitous component of the eukaryotic genomes. It is also present in the monoxenous (i.e.
View Article and Find Full Text PDFIn our previous work we established a T7 polymerase-driven Tetracycline-inducible protein expression system in Leishmania mexicana (Biagi, 1953). We used this system to analyse gene expression profiles during development of L. mexicana in procyclic and metacyclic promastigotes and amastigotes.
View Article and Find Full Text PDFMany high-quality genomes are available for dixenous (two hosts) trypanosomatid species of the genera Trypanosoma, Leishmania, and Phytomonas, but only fragmentary information is available for monoxenous (single-host) trypanosomatids. In trypanosomatids, monoxeny is ancestral to dixeny, thus it is anticipated that the genome sequences of the key monoxenous parasites will be instrumental for both understanding the origin of parasitism and the evolution of dixeny. Here, we present a high-quality genome for Leptomonas pyrrhocoris, which is closely related to the dixenous genus Leishmania.
View Article and Find Full Text PDFHost-parasite relationships and parasite biodiversity have been the center of attention for many years; however the primary data obtained from large-scale studies remain scarce. Our long term investigations of trypanosomatid (Euglenozoa: Kinetoplastea) biodiversity from Neotropical Heteroptera have yielded almost one hundred typing units (TU) of trypanosomatids from one hundred twenty host species. Half of the parasites' TUs were documented in a single host species only but the rest were found parasitizing two to nine species of hosts, with logarithmic distribution best describing the observed distribution of parasites among hosts.
View Article and Find Full Text PDFThe co-infection cases involving dixenous Leishmania spp. (mostly of the L. donovani complex) and presumably monoxenous trypanosomatids in immunocompromised mammalian hosts including humans are well documented.
View Article and Find Full Text PDFMol Biochem Parasitol
November 2014
Here we present a T7-driven, tetracycline-inducible system for protein expression in human pathogen Leishmania mexicana. The gene expression in this strain is tightly regulated and dose- and time-dependent. This system can be widely used by the parasitology community to analyze effects of genes of interest on biology, physiology and virulence of parasites causing cutaneous leishmaniases.
View Article and Find Full Text PDFCompared to their relatives, the diversity of endosymbiont-containing Trypanosomatidae remains under-investigated, with only two new species described in the past 25 years, bringing the total to six. The possible reasons for such a poor representation of this group are either their overall scarcity or susceptibility of their symbionts to antibiotics that are traditionally used for cultivation of flagellates. In this work we describe the isolation, cultivation, as well as morphological and molecular characterization of a novel endosymbiont-harboring trypanosomatid species, Kentomonas sorsogonicus sp.
View Article and Find Full Text PDFFour new species of monoxenous kinetoplastid parasites are described from Brachycera flies, namely Wallaceina raviniae Votýpka et Lukes, 2014 and Crithidia otongatchiensis Votýpka et Lukes, 2014 from Ecuador, Leptomonas moramango Votypka et Lukes, 2014 from Madagascar, and Crithidia pragensis Votýpka, Klepetková et Lukes, 2014 from the Czech Republic. The new species are described here based on sequence analysis of their spliced leader (SL) RNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and small subunit (SSU) rRNA genes, as well as their morphology and ultrastructure. High-pressure freezing and Bernhard's EDTA regressive staining, used for the first time for monoxenous (one host) trypanosomatids, revealed the presence of viral particles with cytosolic localization in one and unique mitochondrial localization in another species.
View Article and Find Full Text PDFTo further investigate the diversity of Trypanosomatidae we have examined the species present within the flea (Siphonaptera) population in the Czech Republic. Out of 1549 fleas, 239 were found to be infected by trypanosomatids. Axenic cultures were established from 90 infected specimens and 29 of them were further characterized.
View Article and Find Full Text PDF