This article considers a theoretical analysis of the influence of the main coupled effects and spacers on the transfer of salt ions in electromembrane systems (EMS) using a 2D mathematical model of the transfer process in a desalting channel with spacers based on boundary value problems for the coupled system of Nernst-Planck-Poisson and Navier-Stokes equations. The basic patterns of salt ion transport have been established, taking into account diffusion, electromigration, forced convection, electroconvection, dissociation/recombination reactions of water molecules, as well as spacers located inside the desalting channel. It has been shown that spacers and taking into account the dissociation/recombination reaction of water molecules significantly change both the formation and development of electroconvection.
View Article and Find Full Text PDF