Publications by authors named "Natalya G Belogurova"

Macrophage (Mph) polarization and functional activity play an important role in the development of inflammatory lung conditions. The previously widely used bimodal classification of Mph into M1 and M2 does not adequately reflect the full range of changes in polarization and functional diversity observed in Mph in response to various stimuli and disease states. Here, we have developed a model for the direct assessment of Mph from bronchial alveolar lavage fluid (BALF) functional alterations, in terms of phagocytosis activity, depending on external stimuli, such as exposure to a range of bacteria (, and ).

View Article and Find Full Text PDF

Rhodamine 6G (R6G) and 4-nitro-2,1,3-benzoxadiazole (NBD) linked through a spacer molecule spermidine (spd), R6G-spd-NBD, produces a fluorescent probe with pH-sensitive FRET (Förster (fluorescence) resonance energy transfer) effect that can be useful in a variety of diagnostic applications. Specifically, cancer cells can be spotted due to a local decrease in pH (Warburg effect). In this research, we applied this approach to intracellular infectious diseases-namely, leishmaniasis, brucellosis, and tuberculosis, difficult to treat because of their localization inside macrophages.

View Article and Find Full Text PDF

Bacterial infections are usually found in the stomach and the first part of the small intestine in association with various pathologies, including ulcers, inflammatory diseases, and sometimes cancer. Treatment options may include combinations of antibiotics with proton pump inhibitors and anti-inflammatory drugs. However, all of them have high systemic exposure and, hence, unfavorable side effects, whereas their exposure in stomach mucus, the predominant location of the bacteria, is limited.

View Article and Find Full Text PDF

The drug resistance of pathogenic bacteria is often due efflux pumps-specific proteins that remove foreign compounds from bacterial cells. To overcome drug resistance, adjuvants are often used that can inhibit efflux pumps or other systems that ensure the resistance of bacteria to the action of antibiotics. We assumed that a new level of effectiveness with the use of an antibiotic + an adjuvant pair could be achieved by their joint delivery into the pathogen.

View Article and Find Full Text PDF

Respiratory infectious diseases have challenged medical communities and researchers. Ceftriaxone, meropenem and levofloxacin are widely used for bacterial infection treatment, although they possess severe side effects. To overcome this, we propose cyclodextrin (CD) and CD-based polymers as a drug delivery system for the drugs under consideration.

View Article and Find Full Text PDF

Polymeric micelles combining the advantages of biocompatible poly- and oligosaccharides with classical micellar amphiphilic systems represent a promising class of drug carriers. In this work, micelles based on chitosan (or cyclodextrin) and oleic acid with various modification degrees were synthesized-the most optimal grafting degree is 15-30% in terms of CMC. According to NTA data, micelles have a hydrodynamic diameter of the main fraction of 60-100 nm.

View Article and Find Full Text PDF

The new method of antibacterial-drug-activity investigation in vitro is proposed as a powerful strategy for understanding how carriers affect drug action during long periods (7 days). In this paper, we observed fluoroquinolone moxifloxacin (MF) antibacterial-efficiency in non-covalent complexes, with the sulfobutyl ether derivative of β-cyclodextrin (SCD) and its polymer (SCDpol). We conducted in vitro studies on two strains that differed in surface morphology.

View Article and Find Full Text PDF

Cyclodextrins (CDs) are promising drug carriers that are used in medicine. We chose CDs with different substituents (polar/apolar, charged/neutral) to obtain polymers (CDpols) with different properties. CDpols are urethanes with average Mw of ~120 kDa; they form nanoparticles 100-150 nm in diameter with variable ζ-potential.

View Article and Find Full Text PDF

Bacterial infections and especially resistant strains of pathogens localized in macrophages and granulomas are intractable diseases that pose a threat to millions of people. In this paper, the theoretical and experimental foundations for solving this problem are proposed due to two key aspects. The first is the use of a three-component polymer system for delivering fluoroquinolones to macrophages due to high-affinity interaction with mannose receptors (CD206).

View Article and Find Full Text PDF

Allylpolyalkoxybenzenes (APABs) and terpenoids from plant essential oils exhibit a range of remarkable biological effects, including analgesic, antibacterial, anti-inflammatory, antioxidant, and others. Synergistic activity with antibiotics of different classes has been reported, with inhibition of P-glycoprotein and impairment of bacterial cell membrane claimed as probable mechanisms. Clearly, a more detailed understanding of APABs' biological activity could help in the development of improved therapeutic options for a range of diseases.

View Article and Find Full Text PDF

Derivatized β-cyclodextrins (CDs), cyclic oligomers of glucose with inner cavity, are able to form the inclusion complex with many poorly soluble lipophilic organic molecules, including drugs, thus improving their solubility in aqueous solutions and drug bioavailability. Here, we have studied the effect of cross-linking of derivatized CDs with different substituent nature, on their binding with antibacterial drug moxifloxacin (MF) which served as a model small molecule drug. Cross-linking of derivatized CDs with 1,6-hexamethylene diisocyanate (HMD) yielded 100-200 nm nanoparticles with distinct binding properties, strongly depending on the nature of the CD substituent, degree of oligomerization, and the nanoparticle's charge.

View Article and Find Full Text PDF

The emergence of new antibiotic-resistant bacterial strains means it is increasingly important to find alternatives to traditional antibiotics, such as bacteriolytic enzymes. The bacteriolytic enzyme lysozyme is widely used in medicine as an antimicrobial agent, and covalent immobilization of lysozyme can expand its range of possible applications. However, information on the effect of such immobilized preparations on whole bacterial cells is quite limited.

View Article and Find Full Text PDF