Publications by authors named "Nataly Silva"

A β-cyclodextrin (β-CD) nanosponge (NS) was synthesized using diphenyl carbonate (DPC) as a cross-linker to encapsulate the antitumor drug cyclophosphamide (CYC), thus obtaining the NSs-CYC system. The formulation was then associated with magnetite nanoparticles (MNPs) to develop the MNPs-NSs-CYC ternary system. The formulations mentioned above were characterized to confirm the deposition of the MNPs onto the organic matrix and that the superparamagnetic nature of the MNPs was preserved upon association.

View Article and Find Full Text PDF

This work focuses on a systematic method to produce Ag, Cu, and Ag/Cu metallic nanoparticles (MNPs) in situ assisted with ultrasound on cellulose paper. By tuning the concentration of AgNO and CuSO salt precursors and ultrasound time, combined with a fixed concentration of ascorbic acid (AA) as a reducing agent, it was possible to control the size, morphology, and polydispersity of the resulting MNPs on cellulose papers. Notably, high yield and low polydispersity of MNPs and bimetallic nanoparticles are achieved by increasing the sonication time on paper samples pre-treated with salt precursors before reduction with AA.

View Article and Find Full Text PDF

This work aimed to synthesize and characterize a nanocarrier that consisted of a ternary system, namely β-cyclodextrin-based nanosponge (NS) inclusion compounds (ICs) associated with silver nanoparticles (AgNPs) to increase the antimicrobial activity of quercetin (QRC). The nanosystem was developed to overcome the therapeutical limitations of QRC. The host-guest interaction between NSs and QRC was confirmed by field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), and proton nuclear magnetic resonance (H-NMR).

View Article and Find Full Text PDF

This review aims to expose mechanical milling as an alternative method for generating copper-based particles (copper particles (CuP) and copper composites (CuC)); more specifically, via a top-down or bottom-up approach, on a lab-scale. This work will also highlight the different parameters that can affect the size distribution, the type, and the morphology of the obtained CuP or CuC, such as the type of mechanical mill, ball-to-powder ratios (BPR), the milling speed, milling time, and the milling environment, among others. This review analyzes various papers based on the Cu-based particle generation route, which begins with a pretreatment step, then mechanical milling, its approach (top-down or bottom-up), and the post-treatment.

View Article and Find Full Text PDF

Wound healing is a public health concern worldwide, particularly in chronic wounds due to delayed healing and susceptibility to bacterial infection. Nanomaterials are widely used in wound healing treatments due to their unique properties associated with their size and very large surface-area-to-volume ratio compared to the same material in bulk. The properties of nanomaterials can be expanded and improved upon with the addition of honey and propolis, due to the presence of bioactive molecules such as polyphenols, flavonoids, peptides, and enzymes.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuO NPs) were synthesized in air by reducing copper (II) sulfate pentahydrate salt (CuSO₄·5H₂O) in the presence of sodium borohydride. The reaction was stabilized with Hexadecyltrimethylammonium bromide (CTAB) in a basic medium and using ultrasound waves. Different molar ratios of CTAB:Cu and NaBH₄:Cu were explored, to optimize the synthesis conditions, and to study the stability, size, and Zeta potential of the colloidal suspension.

View Article and Find Full Text PDF

The inclusion compound (IC) of cyclodextrin (CD) containing the antitumor drug Methotrexate (MTX) as a guest molecule was obtained to increase the solubility of MTX and decrease its inherent toxic effects in nonspecific cells. The IC was conjugated with gold nanoparticles (AuNPs), obtained by a chemical method, creating a ternary intelligent delivery system for MTX molecules, based on the plasmonic properties of the AuNPs. Irradiation of the ternary system, with a laser wavelength tunable with the corresponding surface plasmon of AuNPs, causes local energy dissipation, producing the controlled release of the guest from CD cavities.

View Article and Find Full Text PDF

We have compared the electrocatalytic activity of several substituted and unsubstituted Co and Fe N4-macrocyclic complexes (MN4) for the electro-reduction of oxygen with the complexes directly adsorbed on the edge plane of pyrolytic graphite or adsorbed on carbon nanotubes (CNTs). In the presence of CNTs, one order of magnitude higher surface concentrations of MN4 catalysts per geometric area unit could be adsorbed leading to a lower overpotential for the oxygen electro-reduction and activities in the same order of magnitude as the commercially available Pt/C catalysts in basic pH. From Koutecky-Levich regression analysis, the total number of electrons transferred was approximately 2 for all the Co complexes and 4 for all the Fe ones, both in the presence and in the absence of the carbon nanotubes.

View Article and Find Full Text PDF

Cyclodextrin (CD) molecules form inclusion compounds (ICs), generating dimers that are capable of encapsulating molecules derived from long-chain hydrocarbons. The aim of this study is to evaluate the structural changes experienced by ICs in solution with increasing temperatures. For this, a nuclear magnetic resonance (¹H-NMR) titration was performed to determinate the stoichiometric α-cyclodextrin (α-CD):octylamine (OA) 2:1 and binding constant ( = 2.

View Article and Find Full Text PDF

Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred.

View Article and Find Full Text PDF

Rupture of the spleen can be classified as spontaneous, traumatic, or pathologic. Pathologic rupture has been reported in infectious diseases such as infectious mononucleosis, and hematologic malignancies such as acute and chronic leukemias. Splenomegaly is considered the most relevant factor that predisposes to splenic rupture.

View Article and Find Full Text PDF