Publications by authors named "Nataliya I Trushina"

Tauopathies such as Alzheimer's disease are characterized by aggregation and increased phosphorylation of the microtubule-associated protein tau. Tau's pathological changes are closely linked to neurodegeneration, making tau a prime candidate for intervention. We developed an approach to monitor pathological changes of aggregation-prone human tau in living neurons.

View Article and Find Full Text PDF

The unique morphology of neurons consists of a long axon and a highly variable arbour of dendritic processes, which assort neuronal cells into the main classes. The dendritic tree serves as the main domain for receiving synaptic input. Therefore, to maintain the structure and to be able to plastically change according to the incoming stimuli, molecules and organelles need to be readily available.

View Article and Find Full Text PDF

Microtubules are essential for the development of neurons and the regulation of their structural plasticity. Microtubules also provide the structural basis for the long-distance transport of cargo. Various factors influence the organization and dynamics of neuronal microtubules, and disturbance of microtubule regulation is thought to play a central role in neurodegenerative diseases.

View Article and Find Full Text PDF

The microtubule-associated protein tau plays a central role in tauopathies such as Alzheimer's disease (AD). The exact molecular mechanisms underlying tau toxicity are unclear, but aging is irrefutably the biggest risk factor. This raises the question of how cellular senescence affects the function of tau as a microtubule regulator.

View Article and Find Full Text PDF

Stress granules (SGs) are cytosolic, nonmembranous RNA-protein (RNP) complexes that form in the cytosol of many cells under various stress conditions and can integrate responses to various stressors. Although physiological SG formation appears to be an adaptive and survival-promoting mechanism, inappropriate formation or chronic persistence of SGs has been linked to aging and various neurodegenerative diseases. The quantitative monitoring of the dynamics of SG components in living nerve cells can therefore be an important tool for identifying conditions that disrupt SG function and lead to disease-related attacks in the cells.

View Article and Find Full Text PDF

Tau protein (MAPT) is classified as a microtubule-associated protein (MAP) and is believed to regulate the axonal microtubule arrangement. It belongs to the tau/MAP2/MAP4 family of MAPs that have a similar microtubule binding region at their carboxy-terminal half. In tauopathies, such as Alzheimer's disease, tau is distributed more in the somatodendritic compartment, where it aggregates into filamentous structures, the formation of which correlates with cognitive impairments in patients.

View Article and Find Full Text PDF

Lam proteins transport sterols between the membranes of different cellular compartments. In the gene family consists of three pairs of paralogs. Because the function of paralogous genes can be redundant, the phenotypes of only a small number of gene deletions have been reported; thus, the role of these genes in yeast physiology is still unclear.

View Article and Find Full Text PDF

Tau is a neuronal microtubule-associated protein (MAP) that is involved in the regulation of axonal microtubule assembly. However, as a protein with intrinsically disordered regions (IDRs), tau also interacts with many other partners in addition to microtubules. Phosphorylation at selected sites modulates tau's various intracellular interactions and regulates the properties of IDRs.

View Article and Find Full Text PDF

The evolution of a highly developed nervous system is mirrored by the ability of individual neurons to develop increased morphological complexity. As microtubules (MTs) are crucially involved in neuronal development, we tested the hypothesis that the evolution of complexity is driven by an increasing capacity of the MT system for regulated molecular interactions as it may be implemented by a higher number of molecular players and a greater ability of the individual molecules to interact. We performed bioinformatics analysis on different classes of components of the vertebrate neuronal MT cytoskeleton.

View Article and Find Full Text PDF