Background And Aim: Chronic liver failure results in the decrease of the number of functioning hepatocytes. It dictates the necessity of using exogenous viable cells or/and agents that can stimulate hepatic regenerative processes. Fetal liver contains both hepatic and hematopoietic stem cells with high proliferative potential, which may replace damaged cells.
View Article and Find Full Text PDFThe liver plays a central role in lipid metabolism and the pathophysiology of many lipid disorders leads in turn to liver cell injury. Adult hepatocyte transplants provide well-recognized metabolic support, whilst hepatic stem cells may promote liver regeneration and repair, but in both cases, any clinical application would require low temperature banking of the cells. A model of dietary hypercholesterolemia was established in rabbits over 5 months, and transplants of cryopreserved adult hepatocytes (CH) and cryopreserved fetal liver cells (CFLC) were compared to Sham transplants.
View Article and Find Full Text PDFHepatocyte transplantation is a promising method for supporting hepatic function in a broad spectrum of liver diseases. The aim of this work was to test the efficacy of human fetal liver cells to support the chronic failing liver in an experimental model of carbon tetrachloride (CCl4)-induced cirrhosis in rats. Liver cirrhosis was induced by intraperitoneal administration of CCl4 at a dose of 0.
View Article and Find Full Text PDF