Intracellular bacterial pathogens are distinctive tools for fighting cancer, as they can proliferate in tumors and deliver therapeutic payloads to the eukaryotic cytosol. Cytosol-dwelling bacteria have undergone extensive preclinical and clinical testing, yet the mechanisms of activating innate immunity in tumors are unclear. We report that phylogenetically distinct cytosolic pathogens, including , , and species, elicited anti-tumor responses in poorly immunogenic melanoma and lymphoma in mice.
View Article and Find Full Text PDFBacterial pathogens that invade the eukaryotic cytosol are distinctive tools for fighting cancer, as they preferentially target tumors and can deliver cancer antigens to MHC-I. Cytosolic bacterial pathogens have undergone extensive preclinical development and human clinical trials, yet the molecular mechanisms by which they are detected by innate immunity in tumors is unclear. We report that intratumoral delivery of phylogenetically distinct cytosolic pathogens, including and species, elicited anti-tumor responses in established, poorly immunogenic melanoma and lymphoma in mice.
View Article and Find Full Text PDFBackground: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice.
View Article and Find Full Text PDFGreat strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections.
View Article and Find Full Text PDFCyclic dinucleotides (CDN) and Toll-like receptor (TLR) ligands mobilize antitumor responses by natural killer (NK) cells and T cells, potentially serving as complementary therapies to immune checkpoint therapy. In the clinic thus far, however, CDN therapy targeting stimulator of interferon genes (STING) protein has yielded mixed results, perhaps because it initiates responses potently but does not provide signals to sustain activation and proliferation of activated cytotoxic lymphocytes. To improve efficacy, we combined CDN with a half life-extended interleukin-2 (IL-2) superkine, H9-MSA (mouse serum albumin).
View Article and Find Full Text PDFEpithelial ovarian cancer (EOC) is a highly heterogeneous disease encompassing several distinct molecular subtypes and clinical entities. Despite the initial success of surgical debulking and adjuvant chemotherapy, recurrence with chemotherapy resistant tumors is common in patients with EOC and leads to poor overall survival. The extensive genetic and phenotypic heterogeneity associated with ovarian cancers has hindered the identification of effective prognostic and predictive biomarkers in EOC patients.
View Article and Find Full Text PDFCancer patients often die from symptoms that manifest at a distance from any tumor. Mechanisms underlying these systemic physiological perturbations, called paraneoplastic syndromes, may benefit from investigation in non-mammalian systems. Using a non-metastatic Drosophila adult model, we find that malignant-tumor-produced cytokines drive widespread host activation of JAK-STAT signaling and cause premature lethality.
View Article and Find Full Text PDFThe tumor immune microenvironment (TIME) is a complex ecosystem that contains adaptive and innate immune cells that have tumor-promoting and anti-tumor effects. There is still much to learn about the diversity, plasticity, and functions of innate immune cells in the TIME and their roles in determining the response to immunotherapies. Experts discuss recent advances in our understanding of their biology in cancer as well as outstanding questions and potential therapeutic avenues.
View Article and Find Full Text PDFMalignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive, genomically complex, have soft tissue sarcomas, and are derived from the Schwann cell lineage. Patients with neurofibromatosis type 1 syndrome (NF1), an autosomal dominant tumor predisposition syndrome, are at a high risk for MPNSTs, which usually develop from pre-existing benign Schwann cell tumors called plexiform neurofibromas. NF1 is characterized by loss-of-function mutations in the gene, which encode neurofibromin, a Ras GTPase activating protein (GAP) and negative regulator of RasGTP-dependent signaling.
View Article and Find Full Text PDFSeveral immunotherapy approaches that mobilize CD8 T cell responses stimulate tumor rejection, and some, such as checkpoint blockade, have been approved for several cancer indications and show impressive increases in patient survival. However, tumors may evade CD8 T cell recognition via loss of MHC molecules or because they contain few or no neoantigens. Therefore, approaches are needed to combat CD8 T cell-resistant cancers.
View Article and Find Full Text PDFIn , cyclic adenosine monophosphate (cAMP) serves as an effector of the global transcriptional regulator GlxR. Synthesis of cAMP is catalyzed by the membrane-bound adenylate cyclase CyaB. In this study, we investigated the consequences of decreased intracellular cAMP levels in a Δ mutant.
View Article and Find Full Text PDFIntestinal adaptive immune responses influence host health, yet only a few intestinal bacteria species that induce cognate adaptive immune responses during homeostasis have been identified. Here, we show that , an intestinal bacterium associated with systemic effects on host metabolism and PD-1 checkpoint immunotherapy, induces immunoglobulin G1 (IgG1) antibodies and antigen-specific T cell responses in mice. Unlike previously characterized mucosal responses, T cell responses to are limited to T follicular helper cells in a gnotobiotic setting, without appreciable induction of other T helper fates or migration to the lamina propria.
View Article and Find Full Text PDFFollicular lymphoma and diffuse large B-cell lymphoma (DLBCL) are the most common non-Hodgkin lymphomas distinguishable by unique mutations, chromosomal rearrangements, and gene expression patterns. Here, it is demonstrated that early B-cell progenitors express 2',3'-cyclic-nucleotide 3' phosphodiesterase (CNP) and that when targeted with () mutagenesis, mutation or loss gave rise to highly penetrant lymphoid diseases, predominantly follicular lymphoma and DLBCL. In efforts to identify the genetic drivers and signaling pathways that are functionally important in lymphomagenesis, SB transposon insertions were analyzed from splenomegaly specimens of -mutagenized mice ( = 23) and -mutagenized mice on a background ( = 7) and identified 48 and 12 sites with statistically recurrent transposon insertion events, respectively.
View Article and Find Full Text PDFThe CRISPR/Cas9 system is an RNA guided nuclease system that evolved as a mechanism of adaptive immunity in bacteria. This system has been adopted for numerous genome engineering applications in research and recently, therapeutics. The CRISPR/Cas9 system has been largely implemented by delivery of Cas9 as protein, RNA, or plasmid along with a chimeric crRNA-tracrRNA guide RNA (gRNA) under the expression of a pol III promoter, such as U6.
View Article and Find Full Text PDFEnzyme Microb Technol
January 2018
3-Mercaptolactate (3ML) is an interesting mercapto compound with special regard to the biosynthesis of new polythioesters (PTEs). Unfortunately, this thioester analog of lactic acid is currently not commercially available. For this reason, we developed an in vitro biosynthesis pathway to convert cysteine to 3-mercaptopyruvate (3MPy), which is then rapidly and efficiently converted to 3ML by suitable lactate dehydrogenases (LDHs).
View Article and Find Full Text PDFOverall survival of patients with osteosarcoma (OS) has improved little in the past three decades, and better models for study are needed. OS is common in large dog breeds and is genetically inducible in mice, making the disease ideal for comparative genomic analyses across species. Understanding the level of conservation of intertumor transcriptional variation across species and how it is associated with progression to metastasis will enable us to more efficiently develop effective strategies to manage OS and to improve therapy.
View Article and Find Full Text PDFForward genetic screens using Sleeping Beauty (SB)-mobilized T2/Onc transposons have been used to identify common insertion sites (CISs) associated with tumor formation. Recurrent sites of transposon insertion are commonly identified using ligation-mediated PCR (LM-PCR). Here, we use RNA sequencing (RNA-seq) data to directly identify transcriptional events mediated by T2/Onc.
View Article and Find Full Text PDFUnlabelled: Metastasis is the leading cause of death in patients with osteosarcoma, the most common pediatric bone malignancy. We conducted a multistage genome-wide association study of osteosarcoma metastasis at diagnosis in 935 osteosarcoma patients to determine whether germline genetic variation contributes to risk of metastasis. We identified an SNP, rs7034162, in NFIB significantly associated with metastasis in European osteosarcoma cases, as well as in cases of African and Brazilian ancestry (meta-analysis of all cases: P = 1.
View Article and Find Full Text PDFThe biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C.
View Article and Find Full Text PDFMalignant peripheral nerve sheath tumors (MPNSTs) are sarcomas of Schwann cell lineage origin that occur sporadically or in association with the inherited syndrome neurofibromatosis type 1. To identify genetic drivers of MPNST development, we used the Sleeping Beauty (SB) transposon-based somatic mutagenesis system in mice with somatic loss of transformation-related protein p53 (Trp53) function and/or overexpression of human epidermal growth factor receptor (EGFR). Common insertion site (CIS) analysis of 269 neurofibromas and 106 MPNSTs identified 695 and 87 sites with a statistically significant number of recurrent transposon insertions, respectively.
View Article and Find Full Text PDFStudying complex biological processes such as cancer development, stem cell induction and transdifferentiation requires the modulation of multiple genes or pathways at one time in a single cell. Herein, we describe straightforward methods for rapid and efficient assembly of bacterial marker free multigene cassettes containing up to six complementary DNAs/short hairpin RNAs. We have termed this method RecWay assembly, as it makes use of both Cre recombinase and the commercially available Gateway cloning system.
View Article and Find Full Text PDFBackground: The EWS-FLI-1 fusion protein is associated with 85-90% of Ewing's sarcoma family tumors (ESFT), the remaining 10-15% of cases expressing chimeric genes encoding EWS or FUS fused to one of several ets transcription factor family members, including ERG-1, FEV, ETV1 and ETV6. ESFT are dependent on insulin-like growth factor-1 (IGF-1) for growth and survival and recent evidence suggests that mesenchymal progenitor/stem cells constitute a candidate ESFT origin.
Methodology/principal Findings: To address the functional relatedness between ESFT-associated fusion proteins, we compared mouse progenitor cell (MPC) permissiveness for EWS-FLI-1, EWS-ERG and FUS-ERG expression and assessed the corresponding expression profile changes.