Objective: To characterize the phenotypic spectrum, molecular genetic findings, and functional consequences of pathogenic variants in early-onset epilepsy.
Methods: We identified a cohort of 31 patients with epilepsy of infancy with migrating focal seizures (EIMFS) and screened for variants in using direct Sanger sequencing, a multiple-gene next-generation sequencing panel, and whole-exome sequencing. Additional patients with non-EIMFS early-onset epilepsy in whom we identified variants on local diagnostic multiple gene panel testing were also included.
Objective: The primary objective of this research was to characterize the movement disorders associated with FOXG1 mutations.
Methods: We identified patients with FOXG1 mutations who were referred to either a tertiary movement disorder clinic or tertiary epilepsy service and retrospectively reviewed medical records, clinical investigations, neuroimaging, and available video footage. We administered a telephone-based questionnaire regarding the functional impact of the movement disorders and perceived efficacy of treatment to the caregivers of one cohort of participants.
Background: We sought to investigate the diagnostic yield and mutation spectrum in previously reported genes for early-onset epilepsy and disorders of severe developmental delay.
Methods: In 400 patients with these disorders with no known underlying aetiology and no major structural brain anomaly, we analysed 46 genes using a combination of targeted sequencing on an Illumina MiSeq platform and targeted, exon-level microarray copy number analysis.
Results: We identified causative mutations in 71/400 patients (18%).
We describe neurotransmitter abnormalities in two patients with drug-resistant epilepsy resulting from deleterious de novo mutations in sodium channel genes. Whole exome sequencing identified a de novo SCN2A splice-site mutation (c.2379+1G>A, p.
View Article and Find Full Text PDFThe gamma-aminobutyric acid type A receptor β3 gene (GABRB3) encodes the β3-subunit of the gamma-aminobutyric acid type A (GABAA ) receptor, which mediates inhibitory signalling within the central nervous system. Recently, GABRB3 mutations have been identified in a few patients with infantile spasms and Lennox-Gastaut syndrome. We report the clinical and electrographic features of a novel case of GABRB3-related early-onset epileptic encephalopathy.
View Article and Find Full Text PDFFOXG1-related disorders are caused by heterozygous mutations in FOXG1 and result in a spectrum of neurodevelopmental phenotypes including postnatal microcephaly, intellectual disability with absent speech, epilepsy, chorea, and corpus callosum abnormalities. The recurrence risk for de novo mutations in FOXG1-related disorders is assumed to be low. Here, we describe three unrelated sets of full siblings with mutations in FOXG1 (c.
View Article and Find Full Text PDFObjective: In the absence of aneuploidy or other pathogenic cytogenetic abnormality, fetuses with increased nuchal translucency (NT ≥ 3.5 mm) and/or other sonographic abnormalities have a greater incidence of genetic syndromes, but defining the underlying pathology can be challenging. Here, we investigate the value of whole exome sequencing in fetuses with sonographic abnormalities but normal microarray analysis.
View Article and Find Full Text PDFRyanodine receptor 1 (RYR1) mutations are a common cause of congenital myopathies associated with both dominant and recessive inheritance. Histopathological findings frequently feature central cores or multi-minicores, more rarely, type 1 predominance/uniformity, fiber-type disproportion, increased internal nucleation, and fatty and connective tissue. We describe 71 families, 35 associated with dominant RYR1 mutations and 36 with recessive inheritance.
View Article and Find Full Text PDF