Publications by authors named "Natalie Stingelin"

In this work, we compare two structurally near-amorphous rigid-rod polymers─poly(indacenodithiophene--benzothiadiazole), p(IDT-BT), and poly(indacenodithiophene--benzopyrollodione), p(IDT-BPD)─with orders of magnitude different mobilities to understand the effect charge carrier intrachain delocalization has on electronic transport. Quantum chemical calculations show that p(IDT-BPD) has a barrier to torsion that is significantly lower than that of p(IDT-BT) and is thus more likely to have reduced conjugation lengths. We utilize absorption and photoluminescence spectroscopy to characterize energetic disorder and show that p(IDT-BPD) has higher energetic disorder.

View Article and Find Full Text PDF

Mixed ionic/electronic conducting polymers are versatile systems for, e.g., energy storage, heat management (exploiting electrochromism), and biosensing, all of which require electrochemical doping, i.

View Article and Find Full Text PDF

Large strides have been made in designing an ever-increasing set of modern organic materials of high functionality and thus, often, of high complexity, including semiconducting polymers, organic ferroelectrics, light-emitting small molecules, and beyond. Here, we review how broadly applied thermal analysis methodologies, especially differential scanning calorimetry, can be utilized to provide unique information on the assembly and solid-state structure of this extensive class of materials, as well as the phase behavior of intrinsically intricate multicomponent systems. Indeed, highly relevant insights can be gained that are useful, e.

View Article and Find Full Text PDF

The Editors-in-Chief for , and look back at the 10 anniversary year and the celebratory activities that took place.

View Article and Find Full Text PDF

Planar microcavities with strong light-matter coupling, monolithically processed fully from solution, consisting of two polymer-based distributed Bragg reflectors (DBRs) comprising alternating layers of a high-refractive-index titanium oxide hydrate/poly(vinyl alcohol) hybrid material and a low-refractive-index fluorinated polymer are presented. The DBRs enclose a perylene diimide derivative (b-PDI-1) film positioned at the antinode of the optical mode. Strong light-matter coupling is achieved in these structures at the target excitation of the b-PDI-1.

View Article and Find Full Text PDF

Indacenodithiophene (IDT) copolymers are a class of conjugated polymers that have limited long-range order and high hole mobilities, which makes them promising candidates for use in deformable electronic devices. Key to their high hole mobilities is the coplanar monomer repeat units within the backbone. Poly(indacenodithiophene-benzothiadiazole) (PIDT-BT) and poly(indacenodithiophene-thiapyrollodione) (PIDT-TPD) are two IDT copolymers with planar backbones, but they are brittle at low molecular weight and have unsuitably high elastic moduli.

View Article and Find Full Text PDF

A model mixed-conducting polymer, blended with an amphiphilic block-copolymer, is shown to yield systems with drastically enhanced electro-chemical doping kinetics, leading to faster electrochemical transistors with a high transduction. Importantly, this approach is robust and reproducible, and should be readily adaptable to other mixed conductors without the need for exhaustive chemical modification.

View Article and Find Full Text PDF

Organic mixed ionic electronic conductors (OMIECs) have the potential to enable diverse new technologies, ranging from biosensors to flexible energy storage devices and neuromorphic computing platforms. However, a study of these materials in their operating state, which convolves both passive and potential-driven solvent, cation, and anion ingress, is extremely difficult, inhibiting rational material design. In this report, we present a novel approach to the in situ studies of the electrochemical switching of a prototypical OMIEC based on oligoethylene glycol (oEG) substitution of semicrystalline regioregular polythiophene via grazing-incidence X-ray scattering.

View Article and Find Full Text PDF

VDF-based polymers, such as poly(vinylidene fluoride) (PVDF) and its copolymers, are well-known ferroelectrics of interest for numerous applications, from energy storage to electrocaloric refrigeration. However, their often complex thermal phase behavior that typically leads to a low phase-stability can drastically affect the long-term dielectric properties of this materials family. Here, we demonstrate on the example of the terpolymer P(VDF--TrFE--CFE) (molar ratio: 64/29/7) that by limiting mass transport/segmental chain motion both during solidification and in the solid state, a drastically smaller "burn-in" in relative permittivity, ε, is observed.

View Article and Find Full Text PDF

Frenkel excitons are unequivocally responsible for the optical properties of organic semiconductors and are predicted to form bound exciton pairs (biexcitons). These are key intermediates, ubiquitous in many photophysical processes such as the exciton bimolecular annihilation dynamics in such systems. Because of their spectral ambiguity, there has been, to date, only scant direct evidence of bound biexcitons.

View Article and Find Full Text PDF

The vivid iridescent response from particular butterflies is as an excellent example of how micro-engineered hierarchical architectures that combine physical structures and pigmentary inclusions create unique colouration. To date, however, detailed knowledge is missing to replicate such sophisticated structures in a robust, reliable manner. Here, we deliver spheres-in-grating assemblies with colouration effects as found in nature, exploiting embossed polymer gratings and self-assembled light-absorbing micro-spheres.

View Article and Find Full Text PDF

Semiconducting mesocrystalline bulk polymer specimens that exhibit near-intrinsic properties using channel-die pressing are demonstrated. A predominant edge-on orientation is obtained for poly(3-hexylthiophene-2,5-diyl) (P3HT) throughout 2 mm-thick/wide samples. This persistent mesocrystalline arrangement at macroscopic scales allows reliable evaluation of the electronic charge-transport anisotropy along all three crystallographic axes, with high mobilities found along the π-stacking.

View Article and Find Full Text PDF

We demonstrate proof-of-concept refractive-index structures with large refractive-index-gradient profiles, using a micro-contact photothermal annealing (μCPA) process to pattern organic/inorganic hybrid materials comprising titanium oxide hydrate within a poly(vinyl alcohol) binder. A significant refractive index modulation of up to Δ ≈ +0.05 can be achieved with μCPA within less than a second of pulsed lamp exposure, which promises the potential for a high throughput fabrication process of photonic structures with a polymer-based system.

View Article and Find Full Text PDF

Doping conjugated polymers, which are potential candidates for the next generation of organic electronics, is an effective strategy for manipulating their electrical conductivity. However, selecting a suitable polymer-dopant combination is exceptionally challenging because of the vastness of the chemical, configurational, and morphological spaces one needs to search. In this work, high-performance surrogate models, trained on available experimentally measured data, are developed to predict the p-type electrical conductivity and are used to screen a large candidate hypothetical data set of more than 800 000 polymer-dopant combinations.

View Article and Find Full Text PDF

Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing, and sensing. While great progress has been achieved, polymer-based mixed conductors frequently experience significant volumetric changes during ion uptake/rejection, i.e.

View Article and Find Full Text PDF

The relation of phase morphology and solid-state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase-pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous.

View Article and Find Full Text PDF

The ever increasing library of materials systems developed for organic solar-cells, including highly promising non-fullerene acceptors and new, high-efficiency donor polymers, demands the development of methodologies that i) allow fast screening of a large number of donor:acceptor combinations prior to device fabrication and ii) permit rapid elucidation of how processing affects the final morphology/microstructure of the device active layers. Efficient, fast screening will ensure that important materials combinations are not missed; it will accelerate the technological development of this alternative solar-cell platform toward larger-area production; and it will permit understanding of the structural changes that may occur in the active layer over time. Using the relatively high-efficiency poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl)-2,2';5',2'';5'',2'''-quaterthiophen-5,5'''-diyl)] (PCE11):phenyl-C61-butyric acid-methyl-ester acceptor (PCBM) blend systems, it is demonstrated that by means of straight-forward thermal analysis, vapor-phase-infiltration imaging, and transient-absorption spectroscopy, various blend compositions and processing methodologies can be rapidly screened, information on promising combinations can be obtained, reliability issues with respect to reproducibility of thin-film formation can be identified, and insights into how processing aids, such as nucleating agents, affect structure formation, can be gained.

View Article and Find Full Text PDF

Recent demonstrations of inverted thermal activation of charge mobility in polymer field-effect transistors have excited the interest in transport regimes not limited by thermal barriers. However, rationalization of the limiting factors to access such regimes is still lacking. An improved understanding in this area is critical for development of new materials, establishing processing guidelines, and broadening of the range of applications.

View Article and Find Full Text PDF

The relationship between charge transport and surface morphology is investigated by utilizing rubrene single crystals of varying thicknesses. In the case of pristine crystals, the surface conductivities decrease exponentially as the crystal thickness increases until ∼4 μm, beyond which the surface conductivity saturates. Investigation of the surface morphology using optical and atomic force microscopy reveals that thicker crystals have a higher number of molecular steps, increasing the overall surface roughness compared with thin crystals.

View Article and Find Full Text PDF

The performance of polymeric semiconductors is profoundly affected by the thermodynamic state of its crystalline and amorphous fractions and how they affect the optoelectronic properties. While intense research has been conducted on the crystalline features, fundamental understanding of the amorphous fraction(s) is still lacking. Here, we employ fast scanning calorimetry to provide insights on the glass transition of the archetypal conjugated polymer poly(3-hexylthiophene) (P3HT).

View Article and Find Full Text PDF

Side chain engineering of conjugated donor-acceptor polymers is a new way to manipulate their optoelectronic properties. Two new diketopyrrolopyrrole (DPP)-terthiophene-based conjugated polymers PDPP3T-1 and PDPP3T-2, with both hydrophilic triethylene glycol (TEG) and hydrophobic alkyl chains, are reported. It is demonstrated that the incorporation of TEG chains has a significant effect on the interchain packing and thin-film morphology with noticeable effect on charge transport.

View Article and Find Full Text PDF

Chemical design criteria for materials for bioelectronics applications using a series of copolymer derivatives based on poly(3-hexylthiophene) are established. Directed chemical design via side-chain functionalization with polar groups allows manipulation of ion transport and ion-to-electron transduction. Insights gained will permit increased use of the plethora of materials employed in the organic electronics area for application in the bioelectronics field.

View Article and Find Full Text PDF

There has been long-standing debate on how free charges are generated in donor:acceptor blends that are used in organic solar cells, and which are generally comprised of a complex phase morphology, where intermixed and neat phases of the donor and acceptor material co-exist. Here we resolve this question, basing our conclusions on Stark effect spectroscopy data obtained in the absence and presence of externally applied electric fields. Reconciling opposing views found in literature, we unambiguously demonstrate that the fate of photogenerated electron-hole pairs-whether they will dissociate to free charges or geminately recombine-is determined at ultrafast times, despite the fact that their actual spatial separation can be much slower.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni87moamf6v4a4vvusg7dluulro16gv97): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once