Publications by authors named "Natalie S Adamczyk"

Background: Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain.

View Article and Find Full Text PDF

A major barrier that hampers our understanding of the precise anatomic distribution of pain sensing nerves in and around the joint is the limited view obtained from traditional two dimensional (D) histological approaches. Therefore, our objective was to develop a workflow that allows examination of the innervation of the intact mouse knee joint in 3D by employing clearing-enabled light sheet microscopy. We first surveyed existing clearing protocols (SUMIC, PEGASOS, and DISCO) to determine their ability to clear the whole mouse knee joint, and discovered that a DISCO protocol provided the optimal transparency for light sheet microscopy imaging.

View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis (OA) is a painful joint disease related to neuroimmune interactions, with macrophages in the dorsal root ganglia (DRG) contributing to OA pain in animal models.
  • In experiments, researchers depleted certain macrophages in male and female mice using a specific drug to assess changes in pain behaviors and joint damage following two types of joint surgeries.
  • Results showed that macrophage depletion reduced pain symptoms in both male and female mice but did not affect cartilage damage or inflammation levels, while specific types of macrophages in the DRG were significantly decreased after treatment.
View Article and Find Full Text PDF

Objective: Knee joints are densely innervated by nociceptors. In human knees and rodent models, sprouting of nociceptors has been reported in late-stage osteoarthritis (OA). Here, we sought to describe progressive nociceptor remodeling in early and late-stage OA, using four distinct experimental mouse models.

View Article and Find Full Text PDF

A major barrier that hampers our understanding of the precise anatomic distribution of pain sensing nerves in and around the joint is the limited view obtained from traditional two dimensional (D) histological approaches. Therefore, our objective was to develop a workflow that allows examination of the innervation of the intact mouse knee joint in 3D by employing clearing-enabled light sheet microscopy. We first surveyed existing clearing protocols (SUMIC, PEGASOS, and DISCO) to determine their ability to clear the whole mouse knee joint, and discovered that a DISCO protocol provided the most optimal transparency for light sheet microscopy imaging.

View Article and Find Full Text PDF

Transient Receptor Potential Vanilloid 1 (TRPV1) is a nonselective cation channel expressed by pain-sensing neurons and has been an attractive target for the development of drugs to treat pain. Recently, Src homology region two domain-containing phosphatase-1 (SHP-1, encoded by ) was shown to dephosphorylate TRPV1 in dorsal root ganglia (DRG) neurons, which was linked with alleviating different pain phenotypes. These previous studies were performed in male rodents only and did not directly investigate the role of SHP-1 in TRPV-1 mediated sensitization.

View Article and Find Full Text PDF

Non-opioid targets are needed for addressing osteoarthritis pain, which is mechanical in nature and associated with daily activities such as walking and climbing stairs. Piezo2 has been implicated in the development of mechanical pain, but the mechanisms by which this occurs remain poorly understood, including the role of nociceptors. Here we show that nociceptor-specific Piezo2 conditional knock-out mice were protected from mechanical sensitization associated with inflammatory joint pain in female mice, joint pain associated with osteoarthritis in male mice, as well as both knee swelling and joint pain associated with repeated intra-articular injection of nerve growth factor in male mice.

View Article and Find Full Text PDF

The proposed mission to Mars will expose astronauts to space radiation that is known to adversely affect cognition and tasks that rely on fine sensorimotor function. Space radiation has also been shown to affect the microglial and neurogenic responses in the central nervous system (CNS). We recently reported that a low dose of 5 cGy 600 MeV/n 28Si results in impaired cognition and skilled motor behavior in adult rats.

View Article and Find Full Text PDF

Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions.

View Article and Find Full Text PDF

Background: Traumatic brain injury is a significant public health issue that results in serious disability in survivors. Traumatic brain injury patients are often intoxicated with alcohol when admitted to the hospital; however, it is not clear how acute intoxication affects recovery from a traumatic brain injury. Our group has previously shown that binge alcohol prior to traumatic brain injury resulted in long-term impairment in a fine sensorimotor task that was correlated with a decreased proliferative and neuroblast response from the subventricular zone.

View Article and Find Full Text PDF

Deep space flight missions beyond the Van Allen belt have the potential to expose astronauts to space radiation which may damage the central nervous system and impair function. The proposed mission to Mars will be the longest mission-to-date and identifying mission critical tasks that are sensitive to space radiation is important for developing and evaluating the efficacy of counter measures. Fine motor control has been assessed in humans, rats, and many other species using string-pulling behavior.

View Article and Find Full Text PDF