Publications by authors named "Natalie M Laudicina"

For a given body mass, hominoids have longer clavicles than typical monkeys, reflecting the lateral reorientation of the hominoid glenoid. Relative length of the clavicle varies among hominoids, with orangutans having longer clavicles than expected for body mass and gorillas and chimpanzees having shorter clavicles than expected. Modern humans conform to the general hominoid distribution, but Neandertals and Upper Paleolithic Homo sapiens have longer clavicles than expected for their size and exhibit marked positive allometry in clavicle length.

View Article and Find Full Text PDF

The human pelvic canal (true pelvis) functions to support the abdominopelvic organs and serves as a passageway for reproduction (females). Previous research suggests that these two functions work against each other with the expectation that the supportive role results in a narrower pelvic midplane, while fetal passage necessitates a larger opening. In this research, we examine how gut size relates to the size and shape of the true pelvis, which may have implications on how gut size can influence pelvic floor integrity.

View Article and Find Full Text PDF

Hominin birth mechanics have been examined and debated from limited and often fragmentary fossil pelvic material. Some have proposed that birth in the early hominin genus Australopithecus was relatively easy and ape-like, while others have argued for a more complex, human-like birth mechanism in australopiths. Still others have hypothesized a unique birth mechanism, with no known modern equivalent.

View Article and Find Full Text PDF

Birth mechanics in early hominins are often reconstructed based on cephalopelvic proportions, with little attention paid to neonatal shoulders. Here, we find that neonatal biacromial breadth can be estimated from adult clavicular length (R = 0.80) in primates.

View Article and Find Full Text PDF

The shift to habitual bipedalism 4-6 million years ago in the hominin lineage created a morphologically and functionally different human pelvis compared to our closest living relatives, the chimpanzees. Evolutionary changes to the shape of the pelvis were necessary for the transition to habitual bipedalism in humans. These changes in the bony anatomy resulted in an altered role of muscle function, influencing bipedal gait.

View Article and Find Full Text PDF

During pregnancy, the female body experiences structural changes, such as weight gain. As pregnancy advances, most of the additional mass is concentrated anteriorly on the lower trunk. The purpose of this study is to analyze kinematic and kinetic changes when load is added anteriorly to the trunk, simulating a physical change experienced during pregnancy.

View Article and Find Full Text PDF