Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1(+/-); Notch3(-/-) mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature.
View Article and Find Full Text PDFF1000Prime Rep
April 2015
In development and disease, vascular endothelial growth factor (VEGF) regulates the expansion of the vascular tree. In response to hypoxia, VEGF promotes new capillary formation through the process of angiogenesis by inducing endothelial cell sprouting, proliferation, and migration. Wound healing, tissue regeneration, and tumor growth depend on angiogenesis for adequate nutrient and oxygen delivery.
View Article and Find Full Text PDFUnlabelled: A proangiogenic role for Jagged (JAG)-dependent activation of NOTCH signaling in the endothelium has yet to be described. Using proteins that encoded different NOTCH1 EGF-like repeats, we identified unique regions of Delta-like ligand (DLL)-class and JAG-class ligand-receptor interactions, and developed NOTCH decoys that function as ligand-specific NOTCH inhibitors. N110-24 decoy blocked JAG1/JAG2-mediated NOTCH1 signaling, angiogenic sprouting in vitro, and retinal angiogenesis, demonstrating that JAG-dependent NOTCH signal activation promotes angiogenesis.
View Article and Find Full Text PDFThe bone marrow (BM) microenvironment is composed of multiple niche cells that, by producing paracrine factors, maintain and regenerate the hematopoietic stem cell (HSC) pool (Morrison and Spradling, 2008). We have previously demonstrated that endothelial cells support the proper regeneration of the hematopoietic system following myeloablation (Butler et al., 2010; Hooper et al.
View Article and Find Full Text PDFThe discovery that Notch, a key regulator of cell fate determination, is functional in the vasculature has greatly improved our understanding of differentiation and specialization of vessels. Notch signaling has been proven to be critical for arterial specification, sprouting angiogenesis, and vessel maturation. In newly forming vascular sprouts, Notch promotes the distinction between the leading "tip" endothelial cell and the growing "stalk" cell, the endothelial cells that eventually form a new capillary.
View Article and Find Full Text PDFFoxO1 integrates multiple metabolic pathways. Nutrient levels modulate FoxO1 acetylation, but the functional consequences of this posttranslational modification are unclear. To answer this question, we generated mice bearing alleles that encode constitutively acetylated and acetylation-defective FoxO1 proteins.
View Article and Find Full Text PDFNotch is a critical regulator of angiogenesis, vascular differentiation, and vascular integrity. We investigated whether Notch signaling affects macrophage function during retinal angiogenesis in mice. Retinal macrophage recruitment and localization in mice with myeloid-specific loss of Notch1 was altered, as these macrophages failed to localize at the leading edge of the vascular plexus and at vascular branchpoints.
View Article and Find Full Text PDF