Publications by authors named "Natalie Landa-Rouben"

Nowadays, combination therapy became a standard in oncology. In this study, we compare the activity of two polymeric carriers bearing a combination of the anticancer drugs paclitaxel (PTX) and doxorubicin (DOX), which differ mainly in their architecture and supramolecular assembly. Drugs were covalently bound to a linear polymer, polyglutamic acid (PGA) or to a dendritic scaffold, polyglycerol (PG) decorated with poly(ethylene glycol) (PEG), forming PGA-PTX-DOX and PG-PTX-bz-DOX-PEG, respectively.

View Article and Find Full Text PDF

Ligand-receptor mediated targeting may affect differently the performance of supramolecular drug carriers depending on the nature of the nanocarrier. In this study, we compare the selectivity, safety and activity of doxorubicin (Dox) entrapped in liposomes versus Dox conjugated to polymeric nanocarriers in the presence or absence of a folic acid (FA)-targeting ligand to cancer cells that overexpress the folate receptor (FR). Two pullulan (Pull)-based conjugates of Dox were synthesized, (FA-PEG)-Pull-(Cyst-Dox) and (NH2-PEG)-Pull-(Cyst-Dox).

View Article and Find Full Text PDF

Background: Ischemic cardiac damage is associated with upregulation of cardiac pro-inflammatory cytokines, as well as invasion of lymphocytes into the heart. Regulatory T cells (Tregs) are known to exert a suppressive effect on several immune cell types. We sought to determine whether the Treg pool is influenced by myocardial damage and whether Tregs transfer and deletion affect cardiac remodeling.

View Article and Find Full Text PDF

Aims: Ischaemic damage is associated with up-regulation of pro-inflammatory cytokines, as well as invasion of leucocytes and lymphocytes to the injured muscle. Regulatory T cells (Tregs) exert suppressive effects on several immune and non-immune cellular elements. We hypothesized that adoptive Treg cell transfer and depletion will influence re-establishment of flow in the hindlimb ischaemia model, and that this effect would be mediated by the cytokine interleukin (IL)-10.

View Article and Find Full Text PDF

Aim: Despite clear evidence of immune system involvement in the pathogenesis of myocarditis, the treatment of myocarditis remains nonspecific and supportive. We sought to test the hypothesis that injection of a collagen-based implant into the inflamed myocardium would stabilize the left ventricular (LV) wall and prevent adverse remodeling and dysfunction.

Methods And Results: Autoimmune myocarditis was induced in 42 male Lewis rats.

View Article and Find Full Text PDF

Background: Human mesenchymal stromal cells (hMSCs) from adipose cardiac tissue have attracted considerable interest in regard to cell-based therapies. We aimed to test the hypothesis that hMSCs from the heart and epicardial fat would be better cells for infarct repair.

Methods And Results: We isolated and grew hMSCs from patients with ischemic heart disease from 4 locations: epicardial fat, pericardial fat, subcutaneous fat, and the right atrium.

View Article and Find Full Text PDF

Objectives: This study sought to investigate the hypothesis that the favorable effects of mesenchymal stromal cells (MSCs) on infarct repair are mediated by macrophages.

Background: The favorable effects of MSC therapy in myocardial infarction (MI) are complex and not fully understood.

Methods: We induced MI in mice and allocated them to bone marrow MSCs, mononuclear cells, or saline injection into the infarct, with and without early (4 h before MI) and late (3 days after MI) macrophage depletion.

View Article and Find Full Text PDF

Aims: The aim of this study was to assess the use of a 3 T clinical cardiac magnetic resonance (CMR) scanner to detect injury to the heart in experimental autoimmune myocarditis (EAM).

Methods And Results: The use of 3 T CMR for the detection of cardiac injury was assessed in EAM (n = 55) and control (n = 10) male Lewis rats. Animals were evaluated with serial CMR imaging studies, using a 3 T scanner, and with 2D echocardiography before, and at 2 and 5 weeks after EAM induction.

View Article and Find Full Text PDF

Background: Myocarditis is a life-threatening heart disease characterized by myocardial inflammation, necrosis, and chronic fibrosis. While mast cell inhibition has been suggested to prevent fibrosis in rat myocarditis, little is known about its effectiveness in attenuating cardiac remodeling and dysfunction in myocarditis. Thus, we sought to test the hypothesis that mast cell inhibition will attenuate the inflammatory reaction and associated left ventricular (LV) remodeling and dysfunction after fulminant autoimmune myocarditis.

View Article and Find Full Text PDF