Distinguishing the brain mechanisms affected by distinct addictive drugs may inform targeted therapies against specific substance use disorders (SUDs). Here, we explore the function of a drug-associated, transcriptionally repressive transcription factor (TF), ZFP189, whose expression in the nucleus accumbens (NAc) facilitates cocaine-induced molecular and behavioral adaptations. To uncover the necessity of ZFP189-mediated transcriptional control in driving cocaine-induced behaviors, we created synthetic ZFP189 TFs of distinct transcriptional function, including ZFP189, which activates the expression of target genes and exerts opposite transcriptional control to the endogenously repressive ZFP189.
View Article and Find Full Text PDFPrior research has identified differential protein expression levels of linker histone H1x within the ventral hippocampus (vHipp) of stress-susceptible versus stress-resilient mice. These mice are behaviorally classified based on their divergent responses to chronic social stress. Here, we sought to determine whether elevated vHipp H1x protein levels directly contribute to these diverging behavioral adaptations to stress.
View Article and Find Full Text PDFThe neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in rodent prefrontal cortex was previously demonstrated to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189.
View Article and Find Full Text PDFPrior research has identified differential protein expression levels of linker histone H1x within the ventral hippocampus (vHipp) of stress-susceptible versus stress-resilient mice. These mice are behaviorally classified based on their divergent responses to chronic social stress. Here, we sought to determine whether elevated vHipp H1x protein levels directly contribute to these diverging behavioral adaptations to stress.
View Article and Find Full Text PDFThe neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in the rodent prefrontal cortex was previously determined to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189.
View Article and Find Full Text PDF