The potent antimalarial activity of chloroquine against chloroquine-sensitive strains can be attributed, in part, to its high accumulation in the acidic environment of the heme-rich parasite food vacuole. A key component of this intraparasitic chloroquine accumulation mechanism is a weak base "ion-trapping" effect whereupon the basic drug is concentrated in the acidic food vacuole in its membrane-impermeable diprotonated form. By the incorporation of amino functionality into target artemisinin analogues, we hoped to prepare a new series of analogues that, by virtue of increased accumulation into the ferrous-rich vacuole, would display enhanced antimalarial potency.
View Article and Find Full Text PDF