Risk management has reduced vulnerability to floods and droughts globally, yet their impacts are still increasing. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced.
View Article and Find Full Text PDFSemi-quantitative GC-MS and LC-MS measurements of organic chemicals in groundwater and surface waters were used to assess the overall magnitude and contribution of the most important substances to calculated mixture hazard. Here we use GC-MS and LC-MS measurements taken from two separate national monitoring programs for groundwater and surface water in England, in combination with chronic species sensitivity distribution (SSD) HC50 values published by Posthuma et al. (2019, Environ.
View Article and Find Full Text PDFThe Environment Agency has been using Gas Chromatography-Mass Spectrometry (GC-MS) and Accurate-mass Quadrupole Time-of-Flight (Q-TOF) / Liquid Chromatography-Mass Spectrometry (LC-MS) target screen analysis to semi-quantitatively measure organic substances in groundwater and surface water since 2009 for GC-MS and 2014 for LC-MS. Here we use this data to generate a worst-case "risk" ranking of the detected substances. Three sets of hazard values relating to effects on aquatic organisms, namely Water Framework Directive EQSs, NORMAN Network PNECs (hereafter NORMAN PNEC) and chronic Species Sensitivity Distribution (SSD) HC50s from Posthuma et al.
View Article and Find Full Text PDF