Maintaining the correct number of healthy red blood cells (RBCs) is critical for proper oxygenation of tissues throughout the body. Therefore, RBC homeostasis is a tightly controlled balance between RBC production and RBC clearance, through the processes of erythropoiesis and macrophage hemophagocytosis, respectively. However, during the inflammation associated with infectious, autoimmune, or inflammatory diseases this homeostatic process is often dysregulated, leading to acute or chronic anemia.
View Article and Find Full Text PDFIn this review, we discuss how IgG antibodies can modulate inflammatory signaling during viral infections with a focus on CD16a-mediated functions. We describe the structural heterogeneity of IgG antibody ligands, including subclass and glycosylation that impact binding by and downstream activity of CD16a, as well as the heterogeneity of CD16a itself, including allele and expression density. While inflammation is a mechanism required for immune homeostasis and resolution of acute infections, we focus here on two infectious diseases that are driven by pathogenic inflammatory responses during infection.
View Article and Find Full Text PDFThe IgG Fc domain has the capacity to interact with diverse types of receptors, including the neonatal Fc receptor (FcRn) and Fcγ receptors (FcγRs), which confer pleiotropic biological activities. Whereas FcRn regulates IgG epithelial transport and recycling, Fc effector activities, such as antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis, are mediated by FcγRs, which upon cross-linking transduce signals that modulate the function of effector leukocytes. Despite the well-defined and nonoverlapping functional properties of FcRn and FcγRs, recent studies have suggested that FcγRs mediate transplacental IgG transport, as certain Fc glycoforms were reported to be enriched in fetal circulation.
View Article and Find Full Text PDFInfant mortality from dengue disease is a devastating global health burden that could be minimized with the ability to identify susceptibility for severe disease prior to infection. Although most primary infant dengue infections are asymptomatic, maternally derived anti-dengue immunoglobulin G (IgGs) present during infection can trigger progression to severe disease through antibody-dependent enhancement mechanisms. Importantly, specific characteristics of maternal IgGs that herald progression to severe infant dengue are unknown.
View Article and Find Full Text PDFVaccines (Basel)
June 2018
Recent studies have revealed multiple roles for Fc gamma receptors (FcγRs) in broad immunity against influenza viruses. Activating FcγR pathways can be harnessed to confer protection mediated by non-neutralizing anti-HA IgGs and to increase the potency of broadly neutralizing anti-HA IgGs and of anti-NA IgGs. Separate FcγR pathways can be targeted to enhance the breadth of antibody responses elicited by seasonal influenza virus vaccines.
View Article and Find Full Text PDF