Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease.
View Article and Find Full Text PDFCastration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease.
View Article and Find Full Text PDFBackground: Resistance to androgen receptor signalling inhibitors (ARSIs) represents a major clinical challenge in prostate cancer. We previously demonstrated that the ARSI enzalutamide inhibits only a subset of all AR-regulated genes, and hypothesise that the unaffected gene networks represent potential targets for therapeutic intervention. This study identified the hyaluronan-mediated motility receptor (HMMR) as a survival factor in prostate cancer and investigated its potential as a co-target for overcoming resistance to ARSIs.
View Article and Find Full Text PDFAlterations to the androgen receptor (AR) signalling axis and cellular metabolism are hallmarks of prostate cancer. This study provides insight into both hallmarks by uncovering a novel link between AR and the pentose phosphate pathway (PPP). Specifically, we identify 6-phosphogluoconate dehydrogenase () as an androgen-regulated gene that is upregulated in prostate cancer.
View Article and Find Full Text PDFOver the last thirty years, research in nanomedicine has widely been focused on applications in cancer therapeutics. However, despite the plethora of reported nanoscale drug delivery systems that can successfully eradicate solid tumor xenografts in vivo, many of these formulations have not yet achieved clinical translation. This issue particularly pertains to the delivery of small interfering RNA (siRNA), a highly attractive tool for selective gene targeting.
View Article and Find Full Text PDFBreast and prostate cancer research to date has largely been predicated on the use of cell lines in vitro or in vivo. These limitations have led to the development of more clinically relevant models, such as organoids or murine xenografts that utilize patient-derived material; however, issues related to low take rate, long duration of establishment, and the associated costs constrain use of these models. This study demonstrates that ex vivo culture of freshly resected breast and prostate tumor specimens obtained from surgery, termed patient-derived explants (PDEs), provides a high-throughput and cost-effective model that retains the native tissue architecture, microenvironment, cell viability, and key oncogenic drivers.
View Article and Find Full Text PDFThe importance of androgen receptor (AR) signaling is increasingly being recognized in breast cancer, which has elicited clinical trials aimed at assessing the efficacy of androgen deprivation therapy (ADT) for metastatic disease. In prostate cancer, resistance to ADT is frequently associated with the emergence of androgen-independent splice variants of the AR (AR variants, AR-Vs) that lack the LBD and are constitutively active. Women with breast cancer may be prone to a similar phenomenon.
View Article and Find Full Text PDFObjective: Medroxyprogesterone acetate (MPA), a component of combined estrogen-progestin therapy (EPT), has been associated with increased breast cancer risk in EPT users. MPA can bind to the androgen receptor (AR), and AR signaling inhibits cell growth in breast tissues. Therefore, the aim of this study was to investigate the potential of MPA to disrupt AR signaling in an ex vivo culture model of normal human breast tissue.
View Article and Find Full Text PDFBackground: Krüppel-like factor (KLF) 6 is a candidate tumor suppressor gene in prostate cancer, but the mechanisms contributing to its loss of expression are poorly understood. We characterized KLF6 expression and DNA methylation status during prostate tumorigenesis in humans and mice.
Methods: KLF6 expression was assessed in matched human non-malignant (NM) and tumor prostate tissues (n = 22) by quantitative real-time PCR (qPCR) and in three independent human prostate cancer cohorts bioinformatically.
Background: Epigenetic alterations are common in prostate cancer, yet how these modifications contribute to carcinogenesis is poorly understood. We investigated whether specific histone modifications are prognostic for prostate cancer relapse, and whether the expression of epigenetic genes is altered in prostate tumorigenesis.
Methods: Global levels of histone H3 lysine-18 acetylation (H3K18Ac) and histone H3 lysine-4 dimethylation (H3K4diMe) were assessed immunohistochemically in a prostate cancer cohort of 279 cases.
Embryonic stem cells (ESCs) are pluripotent, self-renewing, and have the ability to reprogram differentiated cell types to pluripotency upon cellular fusion. Polycomb-group (PcG) proteins are important for restraining the inappropriate expression of lineage-specifying factors in ESCs. To investigate whether PcG proteins are required for establishing, rather than maintaining, the pluripotent state, we compared the ability of wild-type, PRC1-, and PRC2-depleted ESCs to reprogram human lymphocytes.
View Article and Find Full Text PDFCohesin-mediated sister chromatid cohesion is essential for chromosome segregation and post-replicative DNA repair. In addition, evidence from model organisms and from human genetics suggests that cohesin is involved in the control of gene expression. This non-canonical role has recently been rationalized by the findings that mammalian cohesin complexes are recruited to a subset of DNase I hypersensitive sites and to conserved noncoding sequences by the DNA-binding protein CTCF.
View Article and Find Full Text PDFDifferentiated cells can be reprogrammed through the formation of heterokaryons and hybrid cells when fused with embryonic stem (ES) cells. Here, we provide evidence that conversion of human B-lymphocytes towards a multipotent state is initiated much more rapidly than previously thought, occurring in transient heterokaryons before nuclear fusion and cell division. Interestingly, reprogramming of human lymphocytes by mouse ES cells elicits the expression of a human ES-specific gene profile, in which markers of human ES cells are expressed (hSSEA4, hFGF receptors and ligands), but markers that are specific to mouse ES cells are not (e.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor-gamma (PPARG) and PPAR-alpha (PPARA) control metabolic processes in many cell types and act as anti-inflammatory regulators in macrophages. PPAR-activating ligands include thiazolidinediones (TZDs), such as troglitazone, once frequently used to treat insulin resistance as well as symptoms of polycystic ovary syndrome (PCOS). Since macrophages within the ovary mediate optimal follicle development, TZD actions to improve PCOS symptoms are likely to be partly mediated through these specifically localized immune cells.
View Article and Find Full Text PDFMacrophages are multifunctional cells that play key roles in the immune response and are abundant throughout female reproductive tissues. Macrophages are identified in tissues by their expression of cell surface receptors and can execute diverse functional activities, including phagocytosis and degradation of foreign antigens, matrix dissolution and tissue remodelling, and production and secretion of cytokines, chemokines and growth factors. Their specific localization and variations in distribution in the ovary during different stages of the cycle, as well as their presence in peri-ovulatory human follicular fluid, suggest that macrophages play diverse roles in intra-ovarian events including folliculogenesis, tissue restructuring at ovulation and corpus luteum formation and regression.
View Article and Find Full Text PDFLeptin is an important satiety hormone and reproductive regulator and is found, along with its receptors, throughout the ovary. To date, the changes in ovarian expression of both of these proteins throughout the estrous cycle has not been studied, and the examination of protein expression has not distinguished between different forms of the receptor. In this study leptin mRNA expression in the immature gonadotropin-primed rat ovary increased 3-fold after human chorionic gonadotropin administration, followed by a dramatic increase in mRNA for both the short form (Ob-Ra) and the long form (Ob-Rb) of the leptin receptor (approximately 8- and 7-fold, respectively).
View Article and Find Full Text PDFLeptin is a product of the ob gene that is produced primarily by adipose tissue. Leptin and its receptors are found within the ovary, but it is unclear what function this hormone has in the ovary. Using immunohistochemistry, we determined that leptin is found in most cell types in the murine ovary, with the highest staining levels observed in the oocyte.
View Article and Find Full Text PDF