We investigated the dehydrogenation reaction and the thermal robustness of the liquid organic hydrogen carrier (LOHC) couple benzaldehyde/cyclohexylmethanol on a Pt(111) model catalyst in situ in synchrotron radiation photoelectron spectroscopy- and complementary temperature-programmed desorption experiments. The system stores hydrogen in a cyclohexyl group and a primary alcohol functionality and achieves an attractive hydrogen storage capacity of 7.0 mass %.
View Article and Find Full Text PDFThe adsorption, reaction and thermal stability of bromine on Rh(111)-supported hexagonal boron nitride (-BN) and graphene were investigated. Synchrotron radiation-based high-resolution x-ray photoelectron spectroscopy (XPS) and temperature-programmed XPS allowed us to follow the adsorption process and the thermal evolutionon the molecular scale. On-BN/Rh(111), bromine adsorbs exclusively in the pores of the nanomesh while we observe no such selectivity for graphene/Rh(111).
View Article and Find Full Text PDFThis study addresses a fundamental question in surface science: the adsorption of halogens on metal surfaces. Using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, low-energy electron diffraction (LEED) and density functional theory (DFT) calculations, we investigated the adsorption and thermal stability of bromine on Rh(111) in detail. The adsorption of elemental bromine on Rh(111) at 170 K was followed in situ by XPS in the Br 3d region, revealing two individual, coverage-dependent species, which we assign to fcc hollow- and bridge-bound atomic bromine.
View Article and Find Full Text PDFThe transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved.
View Article and Find Full Text PDF