Intratumoral (IT) STING activation results in tumor regression in preclinical models, yet factors dictating the balance between innate and adaptive anti-tumor immunity are unclear. Here, clinical candidate STING agonist ADU-S100 (S100) is used in an IT dosing regimen optimized for adaptive immunity to uncover requirements for a T cell-driven response compatible with checkpoint inhibitors (CPIs). In contrast to high-dose tumor ablative regimens that result in systemic S100 distribution, low-dose immunogenic regimens induce local activation of tumor-specific CD8 effector T cells that are responsible for durable anti-tumor immunity and can be enhanced with CPIs.
View Article and Find Full Text PDFThere are a limited number of adjuvants that elicit effective cell-based immunity required for protection against intracellular bacterial pathogens. Here, we report that STING-activating cyclic dinucleotides (CDNs) formulated in a protein subunit vaccine elicit long-lasting protective immunity to Mycobacterium tuberculosis in the mouse model. Subcutaneous administration of this vaccine provides equivalent protection to that of the live attenuated vaccine strain Bacille Calmette-Guérin (BCG).
View Article and Find Full Text PDF