Ultra long-range genomic contacts, which emerge as prominent components of genome architecture, constitute a biochemical paradox. This is because regulatory DNA elements make selective and stable contacts with DNA sequences located megabases away, instead of interacting with proximal sequences occupied by the same exact transcription factors (TF). This is exemplified in olfactory sensory neurons (OSNs), where only a fraction of Lhx2/Ebf1/Ldb1-bound sites interact with each other, converging into highly selective multi-chromosomal enhancer hubs.
View Article and Find Full Text PDFSARS-CoV-2 infects less than 1% of cells in the human body, yet it can cause severe damage in a variety of organs. Thus, deciphering the non-cell-autonomous effects of SARS-CoV-2 infection is imperative for understanding the cellular and molecular disruption it elicits. Neurological and cognitive defects are among the least understood symptoms of COVID-19 patients, with olfactory dysfunction being their most common sensory deficit.
View Article and Find Full Text PDF