Curr Opin Struct Biol
December 2024
Protein kinase inhibitors designed to compete with ATP as a primary mode of action turn out to have considerable effects that go beyond their interference of nucleotide binding. New research shows how kinase activation and sometimes noncatalytic functions of protein kinases can be controlled by allosteric properties of kinase inhibitors, communicating perturbations from the active site to distal regulatory regions.
View Article and Find Full Text PDFThe eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation.
View Article and Find Full Text PDFActivation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named 'L' and 'R,' where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site.
View Article and Find Full Text PDFThe WRAMP structure is a protein network associated with tail-end actomyosin contractility, membrane retraction, and directional persistence during cell migration. A marker of WRAMP structures is melanoma cell adhesion molecule (MCAM) which dynamically polarizes to the cell rear. However, factors that mediate MCAM polarization are still unknown.
View Article and Find Full Text PDFActivation of the extracellular signal regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named "L" and "R", where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site.
View Article and Find Full Text PDFPatients with melanoma receiving drugs targeting BRAFV600E and mitogen-activated protein (MAP) kinase kinases 1 and 2 (MEK1/2) invariably develop resistance and face continued progression. Based on preclinical studies, intermittent treatment involving alternating periods of drug withdrawal and rechallenge has been proposed as a method to delay the onset of resistance. The beneficial effect of intermittent treatment has been attributed to drug addiction, where drug withdrawal reduces the viability of resistant cells due to MAP kinase pathway hyperactivation.
View Article and Find Full Text PDFStructural changes involved in protein kinase activation and ligand binding have been determined from a wealth of X-ray crystallographic evidence. Recent solution studies using NMR, EPR, HX-MS, and fluorescence techniques have deepened this understanding by highlighting the underlying energetics and dynamics of multistate conformational ensembles. This new research is showing how activation mechanisms and ligand binding alter the internal motions of kinases and enable allosteric coupling between distal regulatory regions and the active site.
View Article and Find Full Text PDFThe activation loop segment in protein kinases is a common site for regulatory phosphorylation. In extracellular signal-regulated kinase 2 (ERK2), dual phosphorylation and conformational rearrangement of the activation loop accompany enzyme activation. X-ray structures show the active conformation to be stabilized by multiple ion pair interactions between phosphorylated threonine and tyrosine residues in the loop and six arginine residues in the kinase core.
View Article and Find Full Text PDFHuman catechol -methyltransferase (COMT) has emerged as a model for understanding enzyme-catalyzed methyl transfer from -adenosylmethionine (AdoMet) to small-molecule catecholate acceptors. Mutation of a single residue (tyrosine 68) behind the methyl-bearing sulfonium of AdoMet was previously shown to impair COMT activity by interfering with methyl donor-acceptor compaction within the activated ground state of the wild type enzyme [J. Zhang, H.
View Article and Find Full Text PDFProtein kinases (PKs) are allosteric enzymes that play an essential role in signal transduction by regulating a variety of key cellular processes. Most PKs suffer conformational rearrangements upon phosphorylation that strongly enhance the catalytic activity. Generally, it involves the movement of the phosphorylated loop toward the active site and the rotation of the whole C-terminal lobe.
View Article and Find Full Text PDFConformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions.
View Article and Find Full Text PDFHydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017).
View Article and Find Full Text PDFThe BRAF-MKK1/2-ERK1/2 pathway is constitutively activated in response to oncogenic mutations of BRAF in many cancer types, including melanoma. Although small molecules that inhibit oncogenic BRAF and MAP kinase kinase (MKK)1/2 have been successful in clinical settings, resistance invariably develops. High affinity inhibitors of ERK1/2 have been shown in preclinical studies to bypass the resistance of melanoma and colon cancer cells to BRAF and MKK1/2 inhibitors, and are thus promising additions to current treatment protocols.
View Article and Find Full Text PDFSmall basic proteins present in most Archaea share a common ancestor with the eukaryotic core histones. We report the crystal structure of an archaeal histone-DNA complex. DNA wraps around an extended polymer, formed by archaeal histone homodimers, in a quasi-continuous superhelix with the same geometry as DNA in the eukaryotic nucleosome.
View Article and Find Full Text PDFIn contrast to events at the cell leading edge, rear-polarized mechanisms that control directional cell migration are poorly defined. Previous work described a new intracellular complex, the Wnt5a-receptor-actomyosin polarity (WRAMP) structure, which coordinates the polarized localization of MCAM, actin, and myosin IIB in a Wnt5a-induced manner. However, the polarity and function for the WRAMP structure during cell movement were not determined.
View Article and Find Full Text PDFNucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4) deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging.
View Article and Find Full Text PDFNucleosome assembly in the wake of DNA replication is a key process that regulates cell identity and survival. Chromatin assembly factor 1 (CAF-1) is a H3-H4 histone chaperone that associates with the replisome and orchestrates chromatin assembly following DNA synthesis. Little is known about the mechanism and structure of this key complex.
View Article and Find Full Text PDFThe histone chaperone Chromatin Assembly Factor 1 (CAF-1) deposits tetrameric (H3/H4) histones onto newly-synthesized DNA during DNA replication. To understand the mechanism of the tri-subunit CAF-1 complex in this process, we investigated the protein-protein interactions within the CAF-1-H3/H4 architecture using biophysical and biochemical approaches. Hydrogen/deuterium exchange and chemical cross-linking coupled to mass spectrometry reveal interactions that are essential for CAF-1 function in budding yeast, and importantly indicate that the Cac1 subunit functions as a scaffold within the CAF-1-H3/H4 complex.
View Article and Find Full Text PDFMAP kinases of the ERK family are conserved from yeast to humans. Their catalytic activity is dependent on dual phosphorylation of their activation loop's TEY motif, catalyzed by MAPK kinases (MEKs). Here we studied variants of Mpk1, a yeast orthologue of Erk, which is essential for cell wall integrity.
View Article and Find Full Text PDFMany enzymes are self-regulated and can either inhibit or enhance their own catalytic activity. Enzymes that do both are extremely rare. Many protein kinases autoactivate by autophosphorylating specific sites at their activation loop and are inactivated by phosphatases.
View Article and Find Full Text PDFThe receptor-tyrosine kinase (RTK)/Ras/Raf pathway is an essential cascade for mediating growth factor signaling. It is abnormally overactive in almost all human cancers. The downstream targets of the pathway are members of the extracellular regulated kinases (Erk1/2) family, suggesting that this family is a mediator of the oncogenic capability of the cascade.
View Article and Find Full Text PDFResonance assignments are the first step in most NMR studies of protein structure, function, and dynamics. Standard protein assignment methods employ through-bond backbone experiments on uniformly (13)C/(15)N-labeled proteins. For larger proteins, this through-bond assignment procedure often breaks down due to rapid relaxation and spectral overlap.
View Article and Find Full Text PDFCollision-induced dissociation (CID) remains the predominant mass spectrometry-based method for identifying phosphorylation sites in complex mixtures. Unfortunately, the gas-phase reactivity of phosphoester bonds results in MS/MS spectra dominated by phosphoric acid (H3PO4) neutral loss events, suppressing informative peptide backbone cleavages. To understand the major drivers of H3PO4 neutral loss, we performed robust nonparametric statistical analysis of local and distal sequence effects on the magnitude and variability of neutral loss, using a collection of over 35,000 unique phosphopeptide MS/MS spectra.
View Article and Find Full Text PDFInhibitors of oncogenic B-RAF(V600E) and MKK1/2 have yielded remarkable responses in B-RAF(V600E)-positive melanoma patients. However, the efficacy of these inhibitors is limited by the inevitable onset of resistance. Despite the fact that these inhibitors target the same pathway, combination treatment with B-RAF(V600E) and MKK1/2 inhibitors has been shown to improve both response rates and progression-free survival in B-RAF(V600E) melanoma patients.
View Article and Find Full Text PDF