According to the treadmill hypothesis, the rate of growth cone advance depends upon the difference between the rates of protrusion (powered by actin polymerization at the leading edge) and retrograde F-actin flow, powered by activated myosin. Myosin II, a strong candidate for powering the retrograde flow, is activated by myosin light chain (MLC) phosphorylation. Earlier results showing that pharmacological inhibition of myosin light chain kinase (MLCK) causes growth cone collapse with loss of F-actin-based structures are seemingly inconsistent with the treadmill hypothesis, which predicts faster growth cone advance.
View Article and Find Full Text PDF