Publications by authors named "Natalie Cusimano"

Premise: Parasitic plants with large geographic ranges, and different hosts in parts of their range, may acquire horizontally transferred genes (HGTs), which might sometimes leave a footprint of gradual host and range expansion. Cynomorium coccineum, the only member of the Saxifragales family Cynomoriaceae, is a root holoparasite that occurs in water-stressed habitats from western China to the Canary Islands. It parasitizes at least 10 angiosperm families from different orders, some of them only in parts of its range.

View Article and Find Full Text PDF
Article Synopsis
  • Cynomoriaceae is a family of flowering plants consisting of a few species of root parasites found from the Mediterranean to the Gobi Desert, which remain unplaced taxonomically.
  • Researchers used advanced sequencing techniques to analyze mitochondrial and plastid genomes, as well as nuclear genes from Cynomorium specimens collected in Italy, China, and Iran, creating a comprehensive gene matrix for phylogenetic analysis.
  • Findings suggest that Cynomoriaceae belongs to the Saxifragales order, featuring a complex mitochondrial genome with many circular subgenomes, evidence of significant gene transfers from various hosts, and peculiarities in its plastid genome.
View Article and Find Full Text PDF

Plastid genomes (plastomes) of nonphotosynthetic plants experience extensive gene losses and an acceleration of molecular evolutionary rates. Here, we inferred the mechanisms and timing of reductive genome evolution under relaxed selection in the broomrape family (Orobanchaceae). We analyzed the plastomes of several parasites with a major focus on the genus Orobanche using genome-descriptive and Bayesian phylogenetic-comparative methods.

View Article and Find Full Text PDF

Background And Aims: Since the advent of molecular phylogenetics, numerous attempts have been made to infer the evolutionary trajectories of chromosome numbers on DNA phylogenies. Ideally, such inferences should be evaluated against cytogenetic data. Towards this goal, we carried out phylogenetic modelling of chromosome number change and fluorescence in situ hybridization (FISH) in a medium sized genus of Araceae to elucidate if data from chromosomal markers would support maximum likelihood-inferred changes in chromosome numbers among close relatives.

View Article and Find Full Text PDF

Chronograms from molecular dating are increasingly being used to infer rates of diversification and their change over time. A major limitation in such analyses is incomplete species sampling that moreover is usually nonrandom. While the widely used γ statistic with the Monte Carlo constant-rates test or the birth-death likelihood analysis with the δ AICrc test statistic are appropriate for comparing the fit of different diversification models in phylogenies with random species sampling, no objective automated method has been developed for fitting diversification models to nonrandomly sampled phylogenies.

View Article and Find Full Text PDF

Background And Aims: For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework.

View Article and Find Full Text PDF

Premise Of The Study: The first family-wide molecular phylogeny of the Araceae, a family of about 3800 published species in 120 genera, became available in 1995, followed by a cladistic analysis of morpho-anatomical data in 1997. The most recent and comprehensive family-wide molecular phylogeny was published in 2008 and included species from 102 genera. We reanalyzed the molecular data with a more complete genus sampling and compared the resulting phylogeny with morphological and anatomical data, with a view to contributing to a new formal classification of the Araceae.

View Article and Find Full Text PDF

Studies of diversification patterns often find a slowing in lineage accumulation toward the present. This seemingly pervasive pattern of rate downturns has been taken as evidence for adaptive radiations, density-dependent regulation, and metacommunity species interactions. The significance of rate downturns is evaluated with statistical tests (the gamma statistic and Monte Carlo constant rates (MCCR) test; birth-death likelihood models and Akaike Information Criterion [AIC] scores) that rely on null distributions, which assume that the included species are a random sample of the entire clade.

View Article and Find Full Text PDF

The origin and modes of transmission of introns remain matters of much debate. Previous studies of the group I intron in the angiosperm cox1 gene inferred frequent angiosperm-to-angiosperm horizontal transmission of the intron from apparent incongruence between intron phylogenies and angiosperm phylogenies, patchy distribution of the intron among angiosperms, and differences between cox1 exonic coconversion tracts (the first 22 nt downstream of where the intron inserted). We analyzed the cox1 gene in 179 angiosperms, 110 of them containing the intron (intron(+)) and 69 lacking it (intron(-)).

View Article and Find Full Text PDF