Diabetic peripheral neuropathy (DPN) affects approximately half of the 500 million people with type 2 diabetes worldwide. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) receptors in the peripheral nervous system may be a suitable target for DPN treatment. Fourteen participants were consecutively recruited after being prescribed either semaglutide or dulaglutide as part of standard clinical care for type 2 diabetes.
View Article and Find Full Text PDFDiabetic peripheral neuropathy (DPN) affects ∼50% of the 500 million people with type 2 diabetes worldwide and is considered disabling and irreversible. The current study was undertaken to assess the effect of metformin on peripheral neuropathy outcomes in type 2 diabetes. Participants with type 2 diabetes (n = 69) receiving metformin were recruited and underwent clinical assessment, peripheral nerve ultrasonography, nerve conduction studies, and axonal excitability studies.
View Article and Find Full Text PDFObjective: Diabetic peripheral neuropathy (DPN) is a frequent complication for persons with type 2 diabetes. Previous studies have failed to demonstrate any significant impact of treatment for DPN. The present study assessed the role of axonal ion channel dysfunction in DPN and explored the hypothesis that there may be a progressive change in ion channel abnormalities that varied with disease stage.
View Article and Find Full Text PDFAims/hypothesis: Diabetic peripheral neuropathy (DPN) is a highly prevalent cause of physical disability. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are used to treat type 2 diabetes and animal studies have shown that glucagon-like peptide-1 (GLP-1) receptors are present in the central and peripheral nervous systems. This study investigated whether GLP-1 RAs can improve nerve structure.
View Article and Find Full Text PDFBackground And Purpose: Nerve conduction studies (NCS) are the current objective measure for diagnosis of peripheral neuropathy in type 2 diabetes but do not assess nerve structure. This study investigated the utility of peripheral nerve ultrasound as a marker of the presence and severity of peripheral neuropathy in type 2 diabetes.
Methods: A total of 156 patients were recruited, and nerve ultrasound was undertaken on distal tibial and distal median nerves.
Clin Neurophysiol
October 2021
Objective: To assess the effect of exenatide (a GLP-1 receptor agonist), dipeptidyl peptidase-IV (DPP-IV) inhibitors, and sodium-glucose co-transporter 2 (SGLT-2) inhibitors on measures of peripheral nerve excitability in patients with type 2 diabetes.
Methods: Patients receiving either exenatide (n = 32), a DPP-IV inhibitor (n = 31), or a SGLT-2 inhibitor (n = 27) underwent motor nerve excitability assessments. Groups were similar in age, sex, HbA, diabetes duration, lipids, and neuropathy severity.
Background And Purpose: There is a strong association between the metabolic syndrome in diabetes and the development of peripheral neuropathy; however, the pathophysiological mechanisms remain unknown.
Methods: Participants with type 2 diabetes and metabolic syndrome (T2DM/MetS, n = 89) and type 2 diabetes alone (T2DM; n = 59) underwent median nerve ultrasound and excitability studies to assess peripheral nerve structure and function. A subset of T2DM/MetS (n = 24) and T2DM (n = 22) participants underwent confocal microscopy to assess central and inferior whorl corneal nerve structure.
Background: Impaired physical function drives adverse outcomes in chronic kidney disease (CKD). Peripheral neuropathy is highly prevalent in CKD, though its contribution to physical function in CKD patients is unknown. This study examined the relationships between peripheral neuropathy, walking speed and quality of life (QoL) in stages 3 and 4 CKD.
View Article and Find Full Text PDFIntroduction: M Scan-Fit, an automated method for motor unit number estimation (MUNE), was assessed in muscles innervated by the facial nerve.
Methods: Healthy volunteers were recruited. M Scans were recorded twice from nasalis and depressor anguli oris (DAO) muscles, and then fitted to a probabilistic model.
Aim: The present study was undertaken to investigate mechanisms of peripheral nerve dysfunction in latent autoimmune diabetes in adults (LADA).
Materials And Methods: Participants with LADA (n = 15) underwent median nerve ultrasonography and nerve excitability to examine axonal structure and function, in comparison to cohorts of type 1 diabetes (n = 15), type 2 diabetes (n = 23) and healthy controls (n = 26). The LADA group was matched for diabetes duration, glycaemic control, and neuropathy severity with the type 1 and type 2 diabetes groups.
Objective: Chronic kidney disease (CKD) caused by diabetes is known as diabetic kidney disease (DKD). The present study aimed to examine the underlying mechanisms of axonal dysfunction and features of neuropathy in DKD compared to CKD and type 2 diabetes (T2DM) alone.
Methods: Patients with DKD (n = 30), CKD (n = 28) or T2DM (n = 40) and healthy controls (n = 41) underwent nerve excitability assessments to examine axonal function.
Objective: To demonstrate construct validity of the Total Neuropathy Score (TNS) in assessing peripheral neuropathy in subjects with chronic kidney disease (CKD).
Methods: 113 subjects with CKD and 40 matched controls were assessed for peripheral neuropathy using the TNS. An exploratory factor analysis was conducted and internal consistency of the scale was evaluated using Cronbach's alpha.
Introduction: Axonal excitability measures give insight into the biophysical properties of peripheral nerve axons. In this study we applied these techniques to the study of facial palsy.
Methods: Thirty patients with established facial palsy due to unresolved Bell's palsy or herpes zoster (>6 months duration), tumor invasion of the facial nerve, or traumatic facial nerve injury were assessed using facial nerve excitability techniques.
Introduction: Glycemic variability (GV) may be a novel factor in the pathogenesis of diabetic complications. However, the effect of GV on peripheral nerve function has not been explored systematically.
Methods: The relationship between GV and acute glucose levels on motor and sensory nerve function in 17 patients with type 1 diabetes mellitus (T1DM) was assessed using continuous glucose monitoring and nerve excitability techniques to provide insight into the behavior of axonal voltage-gated ion channels.
Objectives: Diabetic peripheral neuropathy (DPN) is a common and debilitating complication of diabetes mellitus. Treatment largely consists of symptom alleviation and there is a need to identify therapeutic targets for prevention and treatment of DPN. The objective of this study was to utilise novel neurophysiological techniques to investigate axonal function in patients with type 2 diabetes and to prospectively determine their relationship to serum lipids in type 2 diabetic patients.
View Article and Find Full Text PDFObjectives: Diabetic neuropathy is a debilitating complication of diabetes. Animal models of type 1 diabetes (T1DM) suggest that functional and structural changes, specifically axo-glial dysjunction, may contribute to neuropathy development. The present study sought to examine and characterise early sensory axonal function in T1DM patients in the absence of clinical neuropathy.
View Article and Find Full Text PDFClin Neurophysiol
November 2013
The global burden imposed by metabolic diseases and associated complications continue to escalate. Neurological complications, most commonly peripheral neuropathy, represent a significant cause of morbidity and disability in patients with diabetes and chronic kidney disease. Furthermore, health care costs are substantially increased by the presence of complications making investigation into treatment a matter of high priority.
View Article and Find Full Text PDFObjective: Pharmacological agents for diabetic peripheral neuropathy (DN) target a number of mechanisms, including sodium channel function and γ-aminobutyric acid-minergic processes. At present, prescription is undertaken on a trial-and-error basis, leading to prolonged medication trials and greater healthcare costs. Nerve-excitability techniques are a novel method of assessing axonal ion channel function in the clinical setting.
View Article and Find Full Text PDF