Publications by authors named "Natalie Beschorner"

Article Synopsis
  • Impaired sleep is common with aging and is linked to the onset of Alzheimer's disease; researchers studied the effects of sleep deprivation on both healthy mice and a mouse model of Alzheimer's.
  • After sleep deprivation, both groups showed increased EEG slow-wave activity, but only healthy mice exhibited enhanced norepinephrine oscillations typical of good sleep.
  • The Alzheimer’s model mice didn't show this enhancement 24 hours post-deprivation, along with a buildup of amyloid-β protein, suggesting that their disrupted sleep patterns may increase the risk of developing Alzheimer's.
View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) bathes and cushions the brain; however, it also serves a major role in the clearance of metabolic wastes and in the distribution of glucose, lipids, and amino acids. Unlike every other organ in the body, the brain parenchyma lacks a traditional lymphatic system to drain fluids and central nervous system (CNS) antigens. It was historically assumed that all brain wastes were removed by endogenous processing, such as phagocytosis and autophagy, while excess fluids drained directly into the blood.

View Article and Find Full Text PDF

Purpose Of Review: Purpose of this review is to update the ongoing work in the field of glymphatic and neurodegenerative research and to highlight focus areas that are particularly promising.

Recent Findings: Multiple reports have over the past decade documented that glymphatic fluid transport is broadly suppressed in neurodegenerative diseases. Most studies have focused on Alzheimer's disease using a variety of preclinical disease models, whereas the clinical work is based on various neuroimaging approaches.

View Article and Find Full Text PDF

In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown.

View Article and Find Full Text PDF

Pretargeting is a powerful nuclear imaging strategy to achieve enhanced imaging contrast for nanomedicines and reduce the radiation burden to healthy tissue. Pretargeting is based on bioorthogonal chemistry. The most attractive reaction for this purpose is currently the tetrazine ligation, which occurs between -cyclooctene (TCO) tags and tetrazines (Tzs).

View Article and Find Full Text PDF

The glymphatic system is a brain-wide waste drainage system that promotes cerebrospinal fluid circulation through the brain to remove waste metabolites. Currently, the most common methods for assessing glymphatic function are fluorescence microscopy of brain slices, macroscopic cortical imaging, and MRI. While all these methods have been crucial for expanding our understanding of the glymphatic system, new techniques are required to overcome their specific drawbacks.

View Article and Find Full Text PDF

Pretargeting is a promising nuclear imaging technique that allows for the usage of antibodies (Abs) with enhanced imaging contrast and reduced patient radiation burden. It is based on bioorthogonal chemistry with the tetrazine ligation-a reaction between -cyclooctenes (TCOs) and tetrazines (Tzs)-currently being the most popular reaction due to its high selectivity and reactivity. As Abs can be designed to bind specifically to currently 'undruggable' targets such as protein isoforms or oligomers, which play a crucial role in neurodegenerative diseases, pretargeted imaging beyond the BBB is highly sought after, but has not been achieved yet.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common neurodegenerative disease, with an increasing prevalence. Currently, there is no ideal diagnostic molecular imaging agent for diagnosing AD. Antibodies (Abs) have been proposed to close this gap as they can bind selectively and with high affinity to amyloid β (Aβ)-one of the molecular hallmarks of AD.

View Article and Find Full Text PDF

Positron emission tomography (PET) has become an essential clinical tool for diagnosing neurodegenerative diseases with abnormal accumulation of proteins like amyloid-β or tau. Despite many attempts, it has not been possible to develop an appropriate radioligand for imaging aggregated α-synuclein in the brain for diagnosing, e.g.

View Article and Find Full Text PDF

Amyloid-β (Aβ) deposits are a relatively late consequence of Aβ aggregation in Alzheimer's disease. When pathogenic Aβ seeds begin to form, propagate and spread is not known, nor are they biochemically defined. We tested various antibodies for their ability to neutralize Aβ seeds before Aβ deposition becomes detectable in Aβ precursor protein-transgenic mice.

View Article and Find Full Text PDF

Objective: Clinical trials targeting β-amyloid peptides (Aβ) for Alzheimer disease (AD) failed for arguable reasons that include selecting the wrong stages of AD pathophysiology or Aβ being the wrong target. Targeting Aβ to prevent cerebral amyloid angiopathy (CAA) has not been rigorously followed, although the causal role of Aβ for CAA and related hemorrhages is undisputed. CAA occurs with normal aging and to various degrees in AD, where its impact and treatment is confounded by the presence of parenchymal Aβ deposition.

View Article and Find Full Text PDF

The molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain.

View Article and Find Full Text PDF