Purpose: The Medical Imaging and Data Resource Center (MIDRC) was created to facilitate medical imaging machine learning (ML) research for tasks including early detection, diagnosis, prognosis, and assessment of treatment response related to the coronavirus disease 2019 pandemic and beyond. The purpose of this work was to create a publicly available metrology resource to assist researchers in evaluating the performance of their medical image analysis ML algorithms.
Approach: An interactive decision tree, called MIDRC-MetricTree, has been developed, organized by the type of task that the ML algorithm was trained to perform.
Purpose: The Medical Imaging and Data Resource Center (MIDRC) is a multi-institutional effort to accelerate medical imaging machine intelligence research and create a publicly available image repository/commons as well as a sequestered commons for performance evaluation and benchmarking of algorithms. After de-identification, approximately 80% of the medical images and associated metadata become part of the open commons and 20% are sequestered from the open commons. To ensure that both commons are representative of the population available, we introduced a stratified sampling method to balance the demographic characteristics across the two datasets.
View Article and Find Full Text PDFPurpose: The Medical Imaging and Data Resource Center (MIDRC) open data commons was launched to accelerate the development of artificial intelligence (AI) algorithms to help address the COVID-19 pandemic. The purpose of this study was to quantify longitudinal representativeness of the demographic characteristics of the primary MIDRC dataset compared to the United States general population (US Census) and COVID-19 positive case counts from the Centers for Disease Control and Prevention (CDC).
Approach: The Jensen-Shannon distance (JSD), a measure of similarity of two distributions, was used to longitudinally measure the representativeness of the distribution of (1) all unique patients in the MIDRC data to the 2020 US Census and (2) all unique COVID-19 positive patients in the MIDRC data to the case counts reported by the CDC.
Purpose: In women with biopsy-proven breast cancer, histologically normal areas of the parenchyma have shown molecular similarity to the tumor, supporting a potential cancer field effect. The purpose of this work was to investigate relationships of human-engineered radiomic and deep learning features between regions across the breast in mammographic parenchymal patterns and specimen radiographs.
Approach: This study included mammograms from 74 patients with at least 1 identified malignant tumor, of whom 32 also possessed intraoperative radiographs of mastectomy specimens.
The identification of women at risk for sporadic breast cancer remains a clinical challenge. We hypothesize that the temporal analysis of annual screening mammograms, using a long short-term memory (LSTM) network, could accurately identify women at risk of future breast cancer. Women with an imaging abnormality, which had been biopsy-confirmed to be cancer or benign, who also had antecedent imaging available were included in this case-control study.
View Article and Find Full Text PDFBreast cancer screening has evolved substantially over the past few decades because of advancements in new image acquisition systems and novel artificial intelligence (AI) algorithms. This review provides a brief overview of the history, current state, and future of AI in breast cancer screening and diagnosis along with challenges involved in the development of AI systems. Although AI has been developing for interpretation tasks associated with breast cancer screening for decades, its potential to combat the subjective nature and improve the efficiency of human image interpretation is always expanding.
View Article and Find Full Text PDF