Publications by authors named "Natalie Batalha"

Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST's Mid-Infrared Instrument.

View Article and Find Full Text PDF

The recent inference of sulfur dioxide (SO) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations suggests that photochemistry is a key process in high-temperature exoplanet atmospheres. This is because of the low (<1 ppb) abundance of SO under thermochemical equilibrium compared with that produced from the photochemistry of HO and HS (1-10 ppm). However, the SO inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.

View Article and Find Full Text PDF

Close-in giant exoplanets with temperatures greater than 2,000 K ('ultra-hot Jupiters') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on the JWST.

View Article and Find Full Text PDF
Article Synopsis
  • Photochemistry plays a critical role in regulating the composition and stability of planetary atmospheres, but clear photochemical products have not been detected in exoplanets until recently.* -
  • The James Webb Space Telescope (JWST) detected sulfur dioxide (SO) in the atmosphere of the exoplanet WASP-39b, suggesting photochemical processes create SO in this gas giant's atmosphere.* -
  • The presence of SO, linked to the oxidation of hydrogen sulfide, indicates WASP-39b has high metallicity (about 10 times that of the sun), and its spectral features could help understand more about similar exoplanets.*
View Article and Find Full Text PDF
Article Synopsis
  • Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres helps to understand their chemical processes and formation history.
  • The James Webb Space Telescope (JWST) allows for advanced observations of exoplanets, notably WASP-39b, providing insights through time-series data with high precision in a new wavelength range.
  • Findings include the detection of water vapor in the atmosphere with a high metallicity (1-100 times that of the Sun) and a low C/O ratio, suggesting the potential for significant solid material accretion during formation or chemical disequilibrium in the atmosphere.
View Article and Find Full Text PDF

The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST.

View Article and Find Full Text PDF

Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref.

View Article and Find Full Text PDF

We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching four years of time series photometry (Data Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet candidates with periods between 0.25 and 632 days.

View Article and Find Full Text PDF

The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal.

View Article and Find Full Text PDF

The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets.

View Article and Find Full Text PDF

Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties.

View Article and Find Full Text PDF

Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.

View Article and Find Full Text PDF

We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars.

View Article and Find Full Text PDF

When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three.

View Article and Find Full Text PDF

The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.

View Article and Find Full Text PDF

The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionds95l1teri25oi0rns6fu7boro87m9dd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once