The DNA damage response (DDR) mechanisms that allow cells to tolerate DNA replication stress are critically important for genome stability and cell viability. Using an unbiased genetic screen we identify a role for the RING finger E3 ubiquitin ligase RNF25 in promoting DNA replication stress tolerance. In response to DNA replication stress, RNF25-deficient cells generate aberrantly high levels of single-stranded DNA (ssDNA), accumulate in S-phase and show reduced mitotic entry.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Sleep is an essential behavior that supports lifelong brain health and cognition. Neuronal synapses are a major target for restorative sleep function and a locus of dysfunction in response to sleep deprivation (SD). Synapse density is highly dynamic during development, becoming stabilized with maturation to adulthood, suggesting sleep exerts distinct synaptic functions between development and adulthood.
View Article and Find Full Text PDFThe gut microbiome plays critical roles in human homeostasis, disease progression, and pharmacological efficacy through diverse metabolic pathways. Gut bacterial β-glucuronidase (GUS) enzymes reverse host phase 2 metabolism, in turn releasing active hormones and drugs that can be reabsorbed into systemic circulation to affect homeostasis and promote toxic side effects. The FMN-binding and loop 1 gut microbial GUS proteins have been shown to drive drug and toxin reactivation.
View Article and Find Full Text PDFAims: Diabetes is known to increase morbidity and mortality after major surgery. However, literature is conflicting on whether elevated preoperative haemoglobin A (HbA) levels are associated with worse outcomes following major noncardiac surgery. We aimed to investigate the effect of incremental preoperative HbA levels on postoperative outcomes in adults who had undergone major noncardiac surgery.
View Article and Find Full Text PDFHow the oncogene drives cancer growth remains poorly understood. Therefore, we established a systemwide portrait of KRAS- and extracellular signal-regulated kinase (ERK)-dependent gene transcription in KRAS-mutant cancer to delineate the molecular mechanisms of growth and of inhibitor resistance. Unexpectedly, our KRAS-dependent gene signature diverges substantially from the frequently cited Hallmark KRAS signaling gene signature, is driven predominantly through the ERK mitogen-activated protein kinase (MAPK) cascade, and accurately reflects KRAS- and ERK-regulated gene transcription in KRAS-mutant cancer patients.
View Article and Find Full Text PDFTo delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer.
View Article and Find Full Text PDFBroad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS.
View Article and Find Full Text PDFUnlabelled: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign.
View Article and Find Full Text PDFThe E3 ubiquitin ligase TRIM67 is enriched in the central nervous system and is required for proper neuronal development. Previously we demonstrated TRIM67 coordinates with the closely related E3 ubiquitin ligase TRIM9 to regulate cytoskeletal dynamics downstream of the netrin-1 during axon guidance and axon branching in early neuronal morphogenesis. Interestingly, loss of impacts cognitive flexibility in a spatial learning and memory task.
View Article and Find Full Text PDFDuring neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1 dependent axon guidance and branching.
View Article and Find Full Text PDFSleep is an essential behavior that supports lifelong brain health and cognition. Neuronal synapses are a major target for restorative sleep function and a locus of dysfunction in response to sleep deprivation (SD). Synapse density is highly dynamic during development, becoming stabilized with maturation to adulthood, suggesting sleep exerts distinct synaptic functions between development and adulthood.
View Article and Find Full Text PDFPurpose: The objective of this scoping review is to understand the extent, type of evidence, and overall findings in relation to the impact of endoscopic treatment (ET) on health-related quality of life (HR-QoL) in patients with Barrett's dysplasia and early oesophageal cancer.
Methods: A comprehensive search was conducted for literature between 2001 and 2022 in computerised databases (PubMed, Embase, Cochrane Library, and CINAHL Complete). Additionally, sources of unpublished literature were searched in Google Advanced Search.
Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an attractive class of compounds to repurpose for host-targeted therapies against emerging coronavirus infections.
View Article and Find Full Text PDFAmong all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed "discontinuous transcription" that results in the production of a set of 3'-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active.
View Article and Find Full Text PDFTransactive response DNA-binding protein of 43 kDa (TDP-43) is a highly conserved, ubiquitously expressed nucleic acid-binding protein that regulates DNA/RNA metabolism. Genetics and neuropathology studies have linked TDP-43 to several neuromuscular and neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Under pathological conditions, TDP-43 mislocalizes to the cytoplasm where it forms insoluble, hyper-phosphorylated aggregates during disease progression.
View Article and Find Full Text PDFDefining the mechanisms that govern heart development is essential for identifying the etiology of congenital heart disease. Here, quantitative proteomics was used to measure temporal changes in the proteome at critical stages of murine embryonic heart development. Global temporal profiles of the over 7,300 proteins uncovered signature cardiac protein interaction networks that linked protein dynamics with molecular pathways.
View Article and Find Full Text PDFClpP activators ONC201 and related small molecules (TR compounds, Madera Therapeutics), have demonstrated significant anti-cancer potential in and studies, including clinical trials for refractory solid tumors. Though progress has been made in identifying specific phenotypic outcomes following ClpP activation, the exact mechanism by which ClpP activation leads to broad anti-cancer activity has yet to be fully elucidated. In this study, we utilized a multi-omics approach to identify the ClpP-dependent proteomic, transcriptomic, and metabolomic changes resulting from ONC201 or the TR compound TR-57 in triple-negative breast cancer cells.
View Article and Find Full Text PDFNuclear receptor-binding SET domain-containing 2 (NSD2) plays important roles in gene regulation, largely through its ability to dimethylate lysine 36 of histone 3 (H3K36me2). Despite aberrant activity of NSD2 reported in numerous cancers, efforts to selectively inhibit the catalytic activity of this protein with small molecules have been unsuccessful to date. Here, we report the development of UNC8153, a novel NSD2-targeted degrader that potently and selectively reduces the cellular levels of both NSD2 protein and the H3K36me2 chromatin mark.
View Article and Find Full Text PDFMycophenolate mofetil (MMF) is an important immunosuppressant prodrug prescribed to prevent organ transplant rejection and to treat autoimmune diseases. MMF usage, however, is limited by severe gastrointestinal toxicity that is observed in approximately 45% of MMF recipients. The active form of the drug, mycophenolic acid (MPA), undergoes extensive enterohepatic recirculation by bacterial β-glucuronidase (GUS) enzymes, which reactivate MPA from mycophenolate glucuronide (MPAG) within the gastrointestinal tract.
View Article and Find Full Text PDFSurfactant protein A (SP-A) is well-known for its protective role in pulmonary immunity. Previous studies from our group have shown that SP-A mediates eosinophil activities, including degranulation and apoptosis. In order to identify potential binding partners on eosinophils for SP-A, eosinophil lysates were subjected to SP-A pull-down and tandem mass spectrometry (MS/MS) analysis.
View Article and Find Full Text PDFThe opioid receptors are important regulators of pain, reward, and addiction. Limited evidence suggests the mu and delta opioid receptors form a heterodimer (MDOR), which may act as a negative feedback brake on opioid-induced analgesia. However, evidence for the MDOR in vivo is indirect and limited, and there are few selective tools available.
View Article and Find Full Text PDFThe US Department of Defense (DOD) is developing insensitive munitions (IMs) that are resistant to unintended detonation to protect warfighters. To enable material life-cycle analysis for the IM, 1-methyl-3-nitro-1-nitroguanidine (MeNQ), ecotoxicological impacts assessment was required. A previous investigation of MeNQ exposures in Daphnia pulex revealed concentration-responsive decreases in reproduction relative to controls (0 mg/L) across a 174, 346, 709, 1385, and 2286 mg/L exposure range.
View Article and Find Full Text PDF