Eukaryotic PrimPol is a recently discovered DNA-dependent DNA primase and translesion synthesis DNA polymerase found in the nucleus and mitochondria. Although PrimPol has been shown to be required for repriming of stalled replication forks in the nucleus, its role in mitochondria has remained unresolved. Here we demonstrate in vivo and in vitro that PrimPol can reinitiate stalled mtDNA replication and can prime mtDNA replication from nonconventional origins.
View Article and Find Full Text PDFProteostasis is crucial for life and maintained by cellular chaperones and proteases. One major mitochondrial protease is the ClpXP complex, which is comprised of a catalytic ClpX subunit and a proteolytic ClpP subunit. Based on two separate observations, we hypothesized that ClpX may play a leading role in the cellular function of ClpXP.
View Article and Find Full Text PDFThe mitochondrial matrix GTPase NOA1 is a nuclear encoded protein, essential for mitochondrial protein synthesis, oxidative phosphorylation and ATP production. Here, we demonstrate that newly translated NOA1 protein is imported into the nucleus, where it localizes to the nucleolus and interacts with UBF1 before nuclear export and import into mitochondria. Mutation of the nuclear localization signal (NLS) prevented both nuclear and mitochondrial import while deletion of the N-terminal mitochondrial targeting sequence (MTS) or the C-terminal RNA binding domain of NOA1 impaired mitochondrial import.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2013
NOA1 is an evolutionary conserved, nuclear encoded GTPase essential for mitochondrial function and cellular survival. The function of NOA1 for assembly of mitochondrial ribosomes and regulation of OXPHOS activity depends on its GTPase activity, but so far no ligands have been identified that regulate the GTPase activity of NOA1. To identify nucleic acids that bind to the RNA-binding domain of NOA1 we employed SELEX (Systemic Evolution of Ligands by EXponential Enrichment) using recombinant mouse wildtype NOA1 and the GTPase mutant NOA1-K353R.
View Article and Find Full Text PDFFetal (fCM) and adult cardiomyocytes (aCM) significantly differ from each other both by structure and biochemical properties. aCM own a higher mitochondrial mass compared to fCM due to increased energy demand and show a greater density and higher degree of structural organization of myofibrils. The energy metabolism in aCM relies virtually completely on β-oxidation of fatty acids while fCM use carbohydrates.
View Article and Find Full Text PDFIn eukaryotic cells, maintenance of cellular ATP stores depends mainly on mitochondrial oxidative phosphorylation (OXPHOS), which in turn requires sufficient cellular oxygenation. The crucial role of proper oxygenation for cellular viability is reflected by involvement of several mechanisms, which sense hypoxia and regulate activities of respiratory complexes according to available oxygen concentrations. Here, we focus on mouse nitric oxide-associated protein 1 (mNOA1), which has been identified as an important component of the machinery that adjusts OXPHOS activity to oxygen concentrations.
View Article and Find Full Text PDFBackground: Microarray analysis still is a powerful tool to identify new components of the transcriptosome. It helps to increase the knowledge of targets triggered by stress conditions such as hypoxia and nitric oxide. However, analysis of transcriptional regulatory events remain elusive due to the contribution of altered mRNA stability to gene expression patterns as well as changes in the half-life of mRNAs, which influence mRNA expression levels and their turn over rates.
View Article and Find Full Text PDFSite-specific conjugation of proteins to surfaces, spectroscopic probes, or other functional units is a key task for implementing biochemical assays. The streptavidin-biotin interaction has proven a highly versatile tool for detection, quantification, and functional analysis of proteins. We have developed an approach for site-specific reversible biotinylation of recombinant proteins through their histidine tag using biotin conjugated to the multivalent chelator trisnitrilotriacetic acid (BTtris-NTA).
View Article and Find Full Text PDF